Cargando…
Active Learning Exploration of Transition-Metal Complexes to Discover Method-Insensitive and Synthetically Accessible Chromophores
[Image: see text] Transition-metal chromophores with earth-abundant transition metals are an important design target for their applications in lighting and nontoxic bioimaging, but their design is challenged by the scarcity of complexes that simultaneously have well-defined ground states and optimal...
Autores principales: | Duan, Chenru, Nandy, Aditya, Terrones, Gianmarco G., Kastner, David W., Kulik, Heather J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9976347/ https://www.ncbi.nlm.nih.gov/pubmed/36873700 http://dx.doi.org/10.1021/jacsau.2c00547 |
Ejemplares similares
-
MOFSimplify, machine learning models with extracted stability data of three thousand metal–organic frameworks
por: Nandy, Aditya, et al.
Publicado: (2022) -
Low-cost machine learning prediction of excited state properties of iridium-centered phosphors
por: Terrones, Gianmarco G., et al.
Publicado: (2023) -
New Strategies for Direct Methane-to-Methanol Conversion
from Active Learning Exploration of 16 Million Catalysts
por: Nandy, Aditya, et al.
Publicado: (2022) -
Detection of multi-reference character imbalances enables a transfer learning approach for virtual high throughput screening with coupled cluster accuracy at DFT cost
por: Duan, Chenru, et al.
Publicado: (2022) -
A quantitative uncertainty metric controls error in neural network-driven chemical discovery
por: Janet, Jon Paul, et al.
Publicado: (2019)