Cargando…
Enrichment of phenotype among biological forms of Anopheles stephensi Liston through establishment of isofemale lines
BACKGROUND: Vector management programs rely on knowledge of the biology and genetic make-up of mosquitoes. Anopheles stephensi is a major invasive urban malaria vector, distributed throughout the Indian subcontinent and Middle East, and has recently been expanding its range in Africa. With the exist...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9976541/ https://www.ncbi.nlm.nih.gov/pubmed/36855157 http://dx.doi.org/10.1186/s13071-023-05696-2 |
Sumario: | BACKGROUND: Vector management programs rely on knowledge of the biology and genetic make-up of mosquitoes. Anopheles stephensi is a major invasive urban malaria vector, distributed throughout the Indian subcontinent and Middle East, and has recently been expanding its range in Africa. With the existence of three biological forms, distinctly identifiable based on the number of ridges on eggs and varying vectorial competence, An. stephensi is a perfect species for developing isofemale lines, which can be tested for insecticide susceptibility and vectorial competence of various biological forms. METHODS: We describe key steps involved in establishment and validation of isofemale lines. Isofemale colonies were further used for the characterization of insecticide susceptibility and differential vector competence. The results were statistically evaluated through descriptive and inferential statistics using Vassar Stat and Prism GraphPad software packages. RESULTS: Through a meticulous selection process, we overcame an initial inbreeding depression and found no significant morphometric differences in wings and egg size between the parental and respective isofemale lines in later generations. IndCh and IndInt strains showed variations in resistance to different insecticides belonging to all four major classes. We observed a significant change in vectorial competence between the respective isofemale and parental lines. CONCLUSIONS: Isofemale lines can be a valuable resource for characterizing and enhancing several genotypic and phenotypic traits. This is the first detailed report of the establishment of two isofemale lines of type and intermediate biological forms in Anopheles stephensi. The work encompasses characterization of fitness traits among two lines through a transgenerational study. Furthermore, isofemale colonies were established and used to characterize insecticide susceptibility and vector competence. The study provides valuable insights into differential susceptibility status of the parental and isofemale lines to different insecticides belonging to the same class. Corroborating an earlier hypothesis, we demonstrate the high vector competence of the type form relative to the intermediate form using homozygous lines. Using these lines, it is now possible to study host-parasite interactions and identify factors that might be responsible for altered susceptibility and increased vector competence in An. stephensi biological forms that would also pave the way for developing better vector management strategies. GRAPHICAL ABSTRACT: [Image: see text] |
---|