Cargando…

Monolithic integrated micro-supercapacitors with ultra-high systemic volumetric performance and areal output voltage

Monolithic integrated micro-supercapacitors (MIMSCs) with high systemic performance and cell-number density are important for miniaturized electronics to empower the Internet of Things. However, fabrication of customizable MIMSCs in an extremely small space remains a huge challenge considering key f...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Sen, Li, Linmei, Zheng, Shuanghao, Das, Pratteek, Shi, Xiaoyu, Ma, Jiaxin, Liu, Yu, Zhu, Yuanyuan, Lu, Yao, Wu, Zhong-Shuai, Cheng, Hui-Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9976746/
https://www.ncbi.nlm.nih.gov/pubmed/36875784
http://dx.doi.org/10.1093/nsr/nwac271
_version_ 1784899151075475456
author Wang, Sen
Li, Linmei
Zheng, Shuanghao
Das, Pratteek
Shi, Xiaoyu
Ma, Jiaxin
Liu, Yu
Zhu, Yuanyuan
Lu, Yao
Wu, Zhong-Shuai
Cheng, Hui-Ming
author_facet Wang, Sen
Li, Linmei
Zheng, Shuanghao
Das, Pratteek
Shi, Xiaoyu
Ma, Jiaxin
Liu, Yu
Zhu, Yuanyuan
Lu, Yao
Wu, Zhong-Shuai
Cheng, Hui-Ming
author_sort Wang, Sen
collection PubMed
description Monolithic integrated micro-supercapacitors (MIMSCs) with high systemic performance and cell-number density are important for miniaturized electronics to empower the Internet of Things. However, fabrication of customizable MIMSCs in an extremely small space remains a huge challenge considering key factors such as materials selection, electrolyte confinement, microfabrication and device-performance uniformity. Here, we develop a universal and large-throughput microfabrication strategy to address all these issues by combining multistep lithographic patterning, spray printing of MXene microelectrodes and controllable 3D printing of gel electrolytes. We achieve the monolithic integration of electrochemically isolated micro-supercapacitors in close proximity by leveraging high-resolution micropatterning techniques for microelectrode deposition and 3D printing for precise electrolyte deposition. Notably, the MIMSCs obtained demonstrate a high areal-number density of 28 cells cm(−2) (340 cells on 3.5 × 3.5 cm(2)), a record areal output voltage of 75.6 V cm(−2), an acceptable systemic volumetric energy density of 9.8 mWh cm(−3) and an unprecedentedly high capacitance retention of 92% after 4000 cycles at an extremely high output voltage of 162 V. This work paves the way for monolithic integrated and microscopic energy-storage assemblies for powering future microelectronics.
format Online
Article
Text
id pubmed-9976746
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-99767462023-03-02 Monolithic integrated micro-supercapacitors with ultra-high systemic volumetric performance and areal output voltage Wang, Sen Li, Linmei Zheng, Shuanghao Das, Pratteek Shi, Xiaoyu Ma, Jiaxin Liu, Yu Zhu, Yuanyuan Lu, Yao Wu, Zhong-Shuai Cheng, Hui-Ming Natl Sci Rev Research Article Monolithic integrated micro-supercapacitors (MIMSCs) with high systemic performance and cell-number density are important for miniaturized electronics to empower the Internet of Things. However, fabrication of customizable MIMSCs in an extremely small space remains a huge challenge considering key factors such as materials selection, electrolyte confinement, microfabrication and device-performance uniformity. Here, we develop a universal and large-throughput microfabrication strategy to address all these issues by combining multistep lithographic patterning, spray printing of MXene microelectrodes and controllable 3D printing of gel electrolytes. We achieve the monolithic integration of electrochemically isolated micro-supercapacitors in close proximity by leveraging high-resolution micropatterning techniques for microelectrode deposition and 3D printing for precise electrolyte deposition. Notably, the MIMSCs obtained demonstrate a high areal-number density of 28 cells cm(−2) (340 cells on 3.5 × 3.5 cm(2)), a record areal output voltage of 75.6 V cm(−2), an acceptable systemic volumetric energy density of 9.8 mWh cm(−3) and an unprecedentedly high capacitance retention of 92% after 4000 cycles at an extremely high output voltage of 162 V. This work paves the way for monolithic integrated and microscopic energy-storage assemblies for powering future microelectronics. Oxford University Press 2022-11-26 /pmc/articles/PMC9976746/ /pubmed/36875784 http://dx.doi.org/10.1093/nsr/nwac271 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Wang, Sen
Li, Linmei
Zheng, Shuanghao
Das, Pratteek
Shi, Xiaoyu
Ma, Jiaxin
Liu, Yu
Zhu, Yuanyuan
Lu, Yao
Wu, Zhong-Shuai
Cheng, Hui-Ming
Monolithic integrated micro-supercapacitors with ultra-high systemic volumetric performance and areal output voltage
title Monolithic integrated micro-supercapacitors with ultra-high systemic volumetric performance and areal output voltage
title_full Monolithic integrated micro-supercapacitors with ultra-high systemic volumetric performance and areal output voltage
title_fullStr Monolithic integrated micro-supercapacitors with ultra-high systemic volumetric performance and areal output voltage
title_full_unstemmed Monolithic integrated micro-supercapacitors with ultra-high systemic volumetric performance and areal output voltage
title_short Monolithic integrated micro-supercapacitors with ultra-high systemic volumetric performance and areal output voltage
title_sort monolithic integrated micro-supercapacitors with ultra-high systemic volumetric performance and areal output voltage
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9976746/
https://www.ncbi.nlm.nih.gov/pubmed/36875784
http://dx.doi.org/10.1093/nsr/nwac271
work_keys_str_mv AT wangsen monolithicintegratedmicrosupercapacitorswithultrahighsystemicvolumetricperformanceandarealoutputvoltage
AT lilinmei monolithicintegratedmicrosupercapacitorswithultrahighsystemicvolumetricperformanceandarealoutputvoltage
AT zhengshuanghao monolithicintegratedmicrosupercapacitorswithultrahighsystemicvolumetricperformanceandarealoutputvoltage
AT daspratteek monolithicintegratedmicrosupercapacitorswithultrahighsystemicvolumetricperformanceandarealoutputvoltage
AT shixiaoyu monolithicintegratedmicrosupercapacitorswithultrahighsystemicvolumetricperformanceandarealoutputvoltage
AT majiaxin monolithicintegratedmicrosupercapacitorswithultrahighsystemicvolumetricperformanceandarealoutputvoltage
AT liuyu monolithicintegratedmicrosupercapacitorswithultrahighsystemicvolumetricperformanceandarealoutputvoltage
AT zhuyuanyuan monolithicintegratedmicrosupercapacitorswithultrahighsystemicvolumetricperformanceandarealoutputvoltage
AT luyao monolithicintegratedmicrosupercapacitorswithultrahighsystemicvolumetricperformanceandarealoutputvoltage
AT wuzhongshuai monolithicintegratedmicrosupercapacitorswithultrahighsystemicvolumetricperformanceandarealoutputvoltage
AT chenghuiming monolithicintegratedmicrosupercapacitorswithultrahighsystemicvolumetricperformanceandarealoutputvoltage