Cargando…

Economic growth and household energy footprint inequality in China

There are significant differences in energy footprints among individual households. This study uses an environmentally extended input-output approach to estimate the per capita household energy footprint (PCHEF) of 10 different income groups in China’s 30 provinces and analyzes the heterogeneity of...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Qiaoqiao, Sang, Xiaowen, Li, Zhengbo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9977031/
https://www.ncbi.nlm.nih.gov/pubmed/36857403
http://dx.doi.org/10.1371/journal.pone.0282300
Descripción
Sumario:There are significant differences in energy footprints among individual households. This study uses an environmentally extended input-output approach to estimate the per capita household energy footprint (PCHEF) of 10 different income groups in China’s 30 provinces and analyzes the heterogeneity of household consumption categories, and finally measures the energy equality of households in each province by measuring the energy footprint Gini coefficient (EF-Gini). It is found that the energy footprint of the top 10% income households accounted for about 22% of the national energy footprint in 2017, while the energy footprint of the bottom 40% income households accounted for only 24%. With the growth of China’s economy, energy footprint inequality has declined spatially and temporally. Firstly, wealthier coastal regions have experienced greater convergence in their energy footprint than poorer inland regions. Secondly, China’s household EF-Gini has declined from 0.38 in 2012 to 0.36 in 2017. This study shows that China’s economic growth has not only raised household income levels, but also reduced energy footprint inequality.