Cargando…
A multiplex method for detection of SARS-CoV-2 variants based on MALDI-TOF mass spectrometry
The recent outbreak of the coronavirus disease 2019 (COVID-19) pandemic and the continuous evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have highlighted the significance of new detection methods for global monitoring and prevention. Although quantitative reverse tran...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Chinese Medical Association Publishing House. Published by Elsevier BV.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9977071/ https://www.ncbi.nlm.nih.gov/pubmed/37123451 http://dx.doi.org/10.1016/j.bsheal.2023.02.003 |
Sumario: | The recent outbreak of the coronavirus disease 2019 (COVID-19) pandemic and the continuous evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have highlighted the significance of new detection methods for global monitoring and prevention. Although quantitative reverse transcription PCR (RT-qPCR), the current gold standard for diagnosis, performs excellently in genetic testing, its multiplexing capability is limited because of the signal crosstalk of various fluorophores. Herein, we present a highly efficient platform which combines 17-plex assays with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), enabling the targeting of 14 different mutation sites of the spike gene. Diagnosis using a set of 324 nasopharyngeal swabs or sputum clinical samples with SARS-CoV-2 MS method was identical to that with the RT-qPCR. The detection consistency of mutation sites was 97.9% (47/48) compared to Sanger sequencing without cross-reaction with other respiratory-related pathogens. Therefore, the MS method is highly potent to track and assess SARS-CoV-2 changes in a timely manner, thereby aiding the continuous response to viral variation and prevention of further transmission. |
---|