Cargando…
Predicting locations of cryptic pockets from single protein structures using the PocketMiner graph neural network
Cryptic pockets expand the scope of drug discovery by enabling targeting of proteins currently considered undruggable because they lack pockets in their ground state structures. However, identifying cryptic pockets is labor-intensive and slow. The ability to accurately and rapidly predict if and whe...
Autores principales: | Meller, Artur, Ward, Michael, Borowsky, Jonathan, Kshirsagar, Meghana, Lotthammer, Jeffrey M., Oviedo, Felipe, Ferres, Juan Lavista, Bowman, Gregory R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9977097/ https://www.ncbi.nlm.nih.gov/pubmed/36859488 http://dx.doi.org/10.1038/s41467-023-36699-3 |
Ejemplares similares
-
Accelerating Cryptic
Pocket Discovery Using AlphaFold
por: Meller, Artur, et al.
Publicado: (2023) -
Drug specificity and affinity are encoded in the probability of cryptic pocket opening in myosin motor domains
por: Meller, Artur, et al.
Publicado: (2023) -
SARS-CoV-2 Nsp16 activation mechanism and a cryptic pocket with pan-coronavirus antiviral potential
por: Vithani, Neha, et al.
Publicado: (2020) -
SARS-CoV-2 Nsp16 activation mechanism and a cryptic pocket with pan-coronavirus antiviral potential
por: Vithani, Neha, et al.
Publicado: (2021) -
SARS-CoV-2 Simulations Go Exascale to Capture Spike Opening and Reveal Cryptic Pockets Across the Proteome
por: Zimmerman, Maxwell I., et al.
Publicado: (2020)