Cargando…
Cross-species cell-type assignment from single-cell RNA-seq data by a heterogeneous graph neural network
Cross-species comparative analyses of single-cell RNA sequencing (scRNA-seq) data allow us to explore, at single-cell resolution, the origins of the cellular diversity and evolutionary mechanisms that shape cellular form and function. Cell-type assignment is a crucial step to achieve that. However,...
Autores principales: | Liu, Xingyan, Shen, Qunlun, Zhang, Shihua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9977153/ https://www.ncbi.nlm.nih.gov/pubmed/36526433 http://dx.doi.org/10.1101/gr.276868.122 |
Ejemplares similares
-
A graph neural network model to estimate cell-wise metabolic flux using single-cell RNA-seq data
por: Alghamdi, Norah, et al.
Publicado: (2021) -
MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions
por: Baran, Yael, et al.
Publicado: (2019) -
Beyondcell: targeting cancer therapeutic heterogeneity in single-cell RNA-seq data
por: Fustero-Torre, Coral, et al.
Publicado: (2021) -
Using neural networks for reducing the dimensions of single-cell RNA-Seq data
por: Lin, Chieh, et al.
Publicado: (2017) -
DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data
por: Arisdakessian, Cédric, et al.
Publicado: (2019)