Cargando…

Extreme enhancement of superconductivity in epitaxial aluminum near the monolayer limit

BCS theory has been widely successful at describing elemental bulk superconductors. Yet, as the length scales of such superconductors approach the atomic limit, dimensionality as well as the environment of the superconductor can lead to drastically different and unpredictable superconducting behavio...

Descripción completa

Detalles Bibliográficos
Autores principales: van Weerdenburg, Werner M. J., Kamlapure, Anand, Fyhn, Eirik Holm, Huang, Xiaochun, van Mullekom, Niels P. E., Steinbrecher, Manuel, Krogstrup, Peter, Linder, Jacob, Khajetoorians, Alexander Ako
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9977180/
https://www.ncbi.nlm.nih.gov/pubmed/36857452
http://dx.doi.org/10.1126/sciadv.adf5500
Descripción
Sumario:BCS theory has been widely successful at describing elemental bulk superconductors. Yet, as the length scales of such superconductors approach the atomic limit, dimensionality as well as the environment of the superconductor can lead to drastically different and unpredictable superconducting behavior. Here, we report a threefold enhancement of the superconducting critical temperature and gap size in ultrathin epitaxial Al films on Si(111), when approaching the 2D limit, based on high-resolution scanning tunneling microscopy/spectroscopy (STM/STS) measurements. Using spatially resolved spectroscopy, we characterize the vortex structure in the presence of a strong Zeeman field and find evidence of a paramagnetic Meissner effect originating from odd-frequency pairing contributions. These results illustrate two notable influences of reduced dimensionality on a BCS superconductor and present a platform to study BCS superconductivity in large magnetic fields.