Cargando…
Selective chemical reagents to investigate the role of caspase 6 in apoptosis in acute leukemia T cells
Activated effector caspases 3, 6 and 7 are responsible for cleaving a number of target substrates, leading to the ultimate destruction of cells via apoptosis. The functions of caspases 3 and 7 in apoptosis execution have been widely studied over the years with multiple chemical probes for both of th...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9977399/ https://www.ncbi.nlm.nih.gov/pubmed/36873853 http://dx.doi.org/10.1039/d2sc05827h |
_version_ | 1784899280458219520 |
---|---|
author | Groborz, Katarzyna M. Kalinka, Małgorzata Grzymska, Justyna Kołt, Sonia Snipas, Scott J. Poręba, Marcin |
author_facet | Groborz, Katarzyna M. Kalinka, Małgorzata Grzymska, Justyna Kołt, Sonia Snipas, Scott J. Poręba, Marcin |
author_sort | Groborz, Katarzyna M. |
collection | PubMed |
description | Activated effector caspases 3, 6 and 7 are responsible for cleaving a number of target substrates, leading to the ultimate destruction of cells via apoptosis. The functions of caspases 3 and 7 in apoptosis execution have been widely studied over the years with multiple chemical probes for both of these enzymes. In contrast, caspase 6 seems to be largely neglected when compared to the heavily studied caspases 3 and 7. Therefore, the development of new small-molecule reagents for the selective detection and visualization of caspase 6 activity can improve our understanding of molecular circuits of apoptosis and shed new light on how they intertwine with other types of programmed cell death. In this study, we profiled caspase 6 substrate specificity at the P5 position and discovered that, similar to caspase 2, caspase 6 prefers pentapeptide substrates over tetrapeptides. Based on these data, we developed a set of chemical reagents for caspase 6 investigation, including coumarin-based fluorescent substrates, irreversible inhibitors and selective aggregation-induced emission luminogens (AIEgens). We showed that AIEgens are able to distinguish between caspase 3 and caspase 6 in vitro. Finally, we validated the efficiency and selectivity of the synthesized reagents by monitoring lamin A and PARP cleavage via mass cytometry and western blot analysis. We propose that our reagents may provide new research prospects for single-cell monitoring of caspase 6 activity to reveal its function in programmed cell death pathways. |
format | Online Article Text |
id | pubmed-9977399 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-99773992023-03-02 Selective chemical reagents to investigate the role of caspase 6 in apoptosis in acute leukemia T cells Groborz, Katarzyna M. Kalinka, Małgorzata Grzymska, Justyna Kołt, Sonia Snipas, Scott J. Poręba, Marcin Chem Sci Chemistry Activated effector caspases 3, 6 and 7 are responsible for cleaving a number of target substrates, leading to the ultimate destruction of cells via apoptosis. The functions of caspases 3 and 7 in apoptosis execution have been widely studied over the years with multiple chemical probes for both of these enzymes. In contrast, caspase 6 seems to be largely neglected when compared to the heavily studied caspases 3 and 7. Therefore, the development of new small-molecule reagents for the selective detection and visualization of caspase 6 activity can improve our understanding of molecular circuits of apoptosis and shed new light on how they intertwine with other types of programmed cell death. In this study, we profiled caspase 6 substrate specificity at the P5 position and discovered that, similar to caspase 2, caspase 6 prefers pentapeptide substrates over tetrapeptides. Based on these data, we developed a set of chemical reagents for caspase 6 investigation, including coumarin-based fluorescent substrates, irreversible inhibitors and selective aggregation-induced emission luminogens (AIEgens). We showed that AIEgens are able to distinguish between caspase 3 and caspase 6 in vitro. Finally, we validated the efficiency and selectivity of the synthesized reagents by monitoring lamin A and PARP cleavage via mass cytometry and western blot analysis. We propose that our reagents may provide new research prospects for single-cell monitoring of caspase 6 activity to reveal its function in programmed cell death pathways. The Royal Society of Chemistry 2023-01-03 /pmc/articles/PMC9977399/ /pubmed/36873853 http://dx.doi.org/10.1039/d2sc05827h Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Groborz, Katarzyna M. Kalinka, Małgorzata Grzymska, Justyna Kołt, Sonia Snipas, Scott J. Poręba, Marcin Selective chemical reagents to investigate the role of caspase 6 in apoptosis in acute leukemia T cells |
title | Selective chemical reagents to investigate the role of caspase 6 in apoptosis in acute leukemia T cells |
title_full | Selective chemical reagents to investigate the role of caspase 6 in apoptosis in acute leukemia T cells |
title_fullStr | Selective chemical reagents to investigate the role of caspase 6 in apoptosis in acute leukemia T cells |
title_full_unstemmed | Selective chemical reagents to investigate the role of caspase 6 in apoptosis in acute leukemia T cells |
title_short | Selective chemical reagents to investigate the role of caspase 6 in apoptosis in acute leukemia T cells |
title_sort | selective chemical reagents to investigate the role of caspase 6 in apoptosis in acute leukemia t cells |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9977399/ https://www.ncbi.nlm.nih.gov/pubmed/36873853 http://dx.doi.org/10.1039/d2sc05827h |
work_keys_str_mv | AT groborzkatarzynam selectivechemicalreagentstoinvestigatetheroleofcaspase6inapoptosisinacuteleukemiatcells AT kalinkamałgorzata selectivechemicalreagentstoinvestigatetheroleofcaspase6inapoptosisinacuteleukemiatcells AT grzymskajustyna selectivechemicalreagentstoinvestigatetheroleofcaspase6inapoptosisinacuteleukemiatcells AT kołtsonia selectivechemicalreagentstoinvestigatetheroleofcaspase6inapoptosisinacuteleukemiatcells AT snipasscottj selectivechemicalreagentstoinvestigatetheroleofcaspase6inapoptosisinacuteleukemiatcells AT porebamarcin selectivechemicalreagentstoinvestigatetheroleofcaspase6inapoptosisinacuteleukemiatcells |