Cargando…
Compact hydrophilic electrophiles enable highly efficacious high DAR ADCs with excellent in vivo PK profile
The recent success of antibody–drug conjugates (ADC), exemplified by seven new FDA-approvals within three years, has led to increased attention for antibody based targeted therapeutics and fueled efforts to develop new drug-linker technologies for improved next generation ADCs. We present a highly e...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9977445/ https://www.ncbi.nlm.nih.gov/pubmed/36873847 http://dx.doi.org/10.1039/d2sc05678j |
_version_ | 1784899291993604096 |
---|---|
author | Ochtrop, Philipp Jahzerah, Jahaziel Machui, Paul Mai, Isabelle Schumacher, Dominik Helma, Jonas Kasper, Marc-André Hackenberger, Christian P. R. |
author_facet | Ochtrop, Philipp Jahzerah, Jahaziel Machui, Paul Mai, Isabelle Schumacher, Dominik Helma, Jonas Kasper, Marc-André Hackenberger, Christian P. R. |
author_sort | Ochtrop, Philipp |
collection | PubMed |
description | The recent success of antibody–drug conjugates (ADC), exemplified by seven new FDA-approvals within three years, has led to increased attention for antibody based targeted therapeutics and fueled efforts to develop new drug-linker technologies for improved next generation ADCs. We present a highly efficient phosphonamidate-based conjugation handle that combines a discrete hydrophilic PEG-substituent, an established linker-payload and a cysteine-selective electrophile in one compact building block. This reactive entity provides homogeneous ADCs with a high drug-to-antibody ratio (DAR) of 8 in a one-pot reduction and alkylation protocol from non-engineered antibodies. The compact branched PEG-architecture introduces hydrophilicity without increasing the distance between antibody and payload, allowing the generation of the first homogeneous DAR 8 ADC from VC-PAB-MMAE without increased in vivo clearance rates. This high DAR ADC exhibits excellent in vivo stability and increased antitumor activity in tumour xenograft models relative to the established FDA approved VC-PAB-MMAE ADC Adcetris, clearly showing the benefit of the phosphonamidate based building-blocks as a general tool for the efficient and stable antibody-based delivery of highly hydrophobic linker-payload systems. |
format | Online Article Text |
id | pubmed-9977445 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-99774452023-03-02 Compact hydrophilic electrophiles enable highly efficacious high DAR ADCs with excellent in vivo PK profile Ochtrop, Philipp Jahzerah, Jahaziel Machui, Paul Mai, Isabelle Schumacher, Dominik Helma, Jonas Kasper, Marc-André Hackenberger, Christian P. R. Chem Sci Chemistry The recent success of antibody–drug conjugates (ADC), exemplified by seven new FDA-approvals within three years, has led to increased attention for antibody based targeted therapeutics and fueled efforts to develop new drug-linker technologies for improved next generation ADCs. We present a highly efficient phosphonamidate-based conjugation handle that combines a discrete hydrophilic PEG-substituent, an established linker-payload and a cysteine-selective electrophile in one compact building block. This reactive entity provides homogeneous ADCs with a high drug-to-antibody ratio (DAR) of 8 in a one-pot reduction and alkylation protocol from non-engineered antibodies. The compact branched PEG-architecture introduces hydrophilicity without increasing the distance between antibody and payload, allowing the generation of the first homogeneous DAR 8 ADC from VC-PAB-MMAE without increased in vivo clearance rates. This high DAR ADC exhibits excellent in vivo stability and increased antitumor activity in tumour xenograft models relative to the established FDA approved VC-PAB-MMAE ADC Adcetris, clearly showing the benefit of the phosphonamidate based building-blocks as a general tool for the efficient and stable antibody-based delivery of highly hydrophobic linker-payload systems. The Royal Society of Chemistry 2023-01-03 /pmc/articles/PMC9977445/ /pubmed/36873847 http://dx.doi.org/10.1039/d2sc05678j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Ochtrop, Philipp Jahzerah, Jahaziel Machui, Paul Mai, Isabelle Schumacher, Dominik Helma, Jonas Kasper, Marc-André Hackenberger, Christian P. R. Compact hydrophilic electrophiles enable highly efficacious high DAR ADCs with excellent in vivo PK profile |
title | Compact hydrophilic electrophiles enable highly efficacious high DAR ADCs with excellent in vivo PK profile |
title_full | Compact hydrophilic electrophiles enable highly efficacious high DAR ADCs with excellent in vivo PK profile |
title_fullStr | Compact hydrophilic electrophiles enable highly efficacious high DAR ADCs with excellent in vivo PK profile |
title_full_unstemmed | Compact hydrophilic electrophiles enable highly efficacious high DAR ADCs with excellent in vivo PK profile |
title_short | Compact hydrophilic electrophiles enable highly efficacious high DAR ADCs with excellent in vivo PK profile |
title_sort | compact hydrophilic electrophiles enable highly efficacious high dar adcs with excellent in vivo pk profile |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9977445/ https://www.ncbi.nlm.nih.gov/pubmed/36873847 http://dx.doi.org/10.1039/d2sc05678j |
work_keys_str_mv | AT ochtropphilipp compacthydrophilicelectrophilesenablehighlyefficacioushighdaradcswithexcellentinvivopkprofile AT jahzerahjahaziel compacthydrophilicelectrophilesenablehighlyefficacioushighdaradcswithexcellentinvivopkprofile AT machuipaul compacthydrophilicelectrophilesenablehighlyefficacioushighdaradcswithexcellentinvivopkprofile AT maiisabelle compacthydrophilicelectrophilesenablehighlyefficacioushighdaradcswithexcellentinvivopkprofile AT schumacherdominik compacthydrophilicelectrophilesenablehighlyefficacioushighdaradcswithexcellentinvivopkprofile AT helmajonas compacthydrophilicelectrophilesenablehighlyefficacioushighdaradcswithexcellentinvivopkprofile AT kaspermarcandre compacthydrophilicelectrophilesenablehighlyefficacioushighdaradcswithexcellentinvivopkprofile AT hackenbergerchristianpr compacthydrophilicelectrophilesenablehighlyefficacioushighdaradcswithexcellentinvivopkprofile |