Cargando…

Sentiment analysis and emotion detection of post-COVID educational Tweets: Jordan case

Education evolved dramatically under Covid-19, and owing to the conditions, distant learning became mandatory. However, this has opened new realities to the educational business under the label of “Hybrid-Learning,” where educational institutions are still using online learning in addition to face-t...

Descripción completa

Detalles Bibliográficos
Autores principales: Qaqish, Evon, Aranki, Aseel, Etaiwi, Wael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Vienna 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9977637/
https://www.ncbi.nlm.nih.gov/pubmed/36880094
http://dx.doi.org/10.1007/s13278-023-01041-8
Descripción
Sumario:Education evolved dramatically under Covid-19, and owing to the conditions, distant learning became mandatory. However, this has opened new realities to the educational business under the label of “Hybrid-Learning,” where educational institutions are still using online learning in addition to face-to-face learning, which has changed people’s lives and split their opinions and emotions. As a result, this study investigated the Jordanian community’s perspectives and feelings on the transition from pure face-to-face education to blended education by examining related tweets in the post-COVID era. Specifically, using NLP Emotion detection and Sentiment Analysis approaches, as well as deep learning models. As a result of analyzing the collected tweets, 18.75% of studied Jordanian’s community sample are dissatisfied (Anger and Hate), 21.25% are negative (Sad), 13% are Happy, and 24.50 percent are Neutral about it.