Cargando…
Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST
Spatial transcriptomics technologies generate gene expression profiles with spatial context, requiring spatially informed analysis tools for three key tasks, spatial clustering, multisample integration, and cell-type deconvolution. We present GraphST, a graph self-supervised contrastive learning met...
Autores principales: | Long, Yahui, Ang, Kok Siong, Li, Mengwei, Chong, Kian Long Kelvin, Sethi, Raman, Zhong, Chengwei, Xu, Hang, Ong, Zhiwei, Sachaphibulkij, Karishma, Chen, Ao, Zeng, Li, Fu, Huazhu, Wu, Min, Lim, Lina Hsiu Kim, Liu, Longqi, Chen, Jinmiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9977836/ https://www.ncbi.nlm.nih.gov/pubmed/36859400 http://dx.doi.org/10.1038/s41467-023-36796-3 |
Ejemplares similares
-
SpatialDWLS: accurate deconvolution of spatial transcriptomic data
por: Dong, Rui, et al.
Publicado: (2021) -
Spatially Informed Cell Type Deconvolution for Spatial Transcriptomics
por: Ma, Ying, et al.
Publicado: (2022) -
Establishing a human bone marrow single cell reference atlas to study ageing and diseases
por: Lee, Nicole Yee Shin, et al.
Publicado: (2023) -
Spatial Transcriptomic Cell-type Deconvolution Using Graph Neural Networks
por: Li, Yawei, et al.
Publicado: (2023) -
DISCO: a database of Deeply Integrated human Single-Cell Omics data
por: Li, Mengwei, et al.
Publicado: (2021)