Cargando…
Prediction of transition state structures of gas-phase chemical reactions via machine learning
The elucidation of transition state (TS) structures is essential for understanding the mechanisms of chemical reactions and exploring reaction networks. Despite significant advances in computational approaches, TS searching remains a challenging problem owing to the difficulty of constructing an ini...
Autor principal: | Choi, Sunghwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9977841/ https://www.ncbi.nlm.nih.gov/pubmed/36859495 http://dx.doi.org/10.1038/s41467-023-36823-3 |
Ejemplares similares
-
Machine Learning Applications for Chemical Reactions
por: Park, Sanggil, et al.
Publicado: (2022) -
Machine learning in chemical reaction space
por: Stocker, Sina, et al.
Publicado: (2020) -
Low-cost prediction of molecular and transition state partition functions via machine learning
por: Komp, Evan, et al.
Publicado: (2022) -
Machine learning based energy-free structure predictions of molecules, transition states, and solids
por: Lemm, Dominik, et al.
Publicado: (2021) -
Quantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias
por: Kovács, Dávid Péter, et al.
Publicado: (2021)