Cargando…

Visualizing electroluminescence process in light-emitting electrochemical cells

Electroluminescence occurs via recombination reactions between electrons and holes, but these processes have not been directly evaluated. Here, we explore the operation dynamics of ionic liquid-based light-emitting electrochemical cells (LECs) with stable electroluminescence by multi-timescale spect...

Descripción completa

Detalles Bibliográficos
Autores principales: Yasuji, Kosuke, Sakanoue, Tomo, Yonekawa, Fumihiro, Kanemoto, Katsuichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9977921/
https://www.ncbi.nlm.nih.gov/pubmed/36859421
http://dx.doi.org/10.1038/s41467-023-36472-6
Descripción
Sumario:Electroluminescence occurs via recombination reactions between electrons and holes, but these processes have not been directly evaluated. Here, we explore the operation dynamics of ionic liquid-based light-emitting electrochemical cells (LECs) with stable electroluminescence by multi-timescale spectroscopic measurements synchronized with the device operation. Bias-modulation spectroscopy, measuring spectral responses to modulated biases, reveals the bias-dependent behavior of p-doped layers varying from growth to saturation and to recession. The operation dynamics of the LEC is directly visualized by time-resolved bias-modulation spectra, revealing the following findings. Electron injection occurs more slowly than hole injection, causing delay of electroluminescence with respect to the p-doping. N-doping proceeds as the well-grown p-doped layer recedes, which occur while the electroluminescence intensity remains constant. With the growth of n-doped layer, hole injection is reduced due to charge balance, leading to hole-accumulation on the anode, after which LEC operation reaches equilibrium. These spectroscopic techniques are widely applicable to explore the dynamics of electroluminescence-devices.