Cargando…

Comparison of protective effects of hesperetin and pectolinarigenin on high-fat diet-induced hyperlipidemia and hepatic steatosis in Golden Syrian hamsters

A comparative study was conducted to determine whether hesperetin and pectolinarigenin could lower total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL), and high-density lipoprotein cholesterol (HDL) in a high-fat diet (HFD)-induced high lipid model in Golden Syrian...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Lulu, Zou, Mingzhe, Zhou, Xingxing, Wang, Songhua, Meng, Wei, Lan, Zhou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Japanese Association for Laboratory Animal Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9978126/
https://www.ncbi.nlm.nih.gov/pubmed/36310057
http://dx.doi.org/10.1538/expanim.22-0115
Descripción
Sumario:A comparative study was conducted to determine whether hesperetin and pectolinarigenin could lower total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL), and high-density lipoprotein cholesterol (HDL) in a high-fat diet (HFD)-induced high lipid model in Golden Syrian hamsters. 48 Golden Syrian hamsters (8 weeks old) were fed with a HFD for 15 days. HFD induced significant increases in plasma TC, TG, LDL, and HDL. Then, these high lipid hamsters were divided into four groups and were administered with 0.5% sodium carboxymethyl cellulose (CMC-Na), hesperetin (100 mg/kg/day), pectolinarigenin (100 mg/kg/day) or atorvastatin (1.0 mg/kg/day), for 7 weeks. It was found that pectolinarigenin treatment resulted in significant reductions in body weight, adiposity index, serum levels of TC, TG and hepatic TC, TG and free fatty acid compared to those in control hamsters with hyperlipidemia (P<0.05). However, hesperetin treatment only caused reductions in plasma TC and hepatic TG levels. Besides, the hamsters treated with pectolinarigenin showed a relatively normal hepatic architecture compared to the hepatic steatosis shown in the control group. Moreover, the expressions of fatty-acid synthase (Fasn) and solute carrier family 27 member 1 (Slc27a1) involved in lipid biosynthesis, were suppressed in the pectolinarigenin-treated groups, and the expression of carnitine palmitoyltransferase 1A (Cpt1a) involved in fatty acid oxidation was increased in the pectolinarigenin-treated group. Taken together, these results suggest pectolinarigenin exerts stronger protective effects against hyperlipidemia and hepatic steatosis than hesperetin, which may involve the inhibition of lipid uptake and biosynthesis.