Cargando…

Boosting Productivity for Advanced Biomanufacturing by Re-Using Viable Cells

Monoclonal antibodies (mAb) have gained enormous therapeutic application during the last decade as highly efficient and flexible tools for the treatment of various diseases. Despite this success, there remain opportunities to drive down the manufacturing costs of antibody-based therapies through cos...

Descripción completa

Detalles Bibliográficos
Autores principales: Reger, Lucas Nik, Saballus, Martin, Matuszczyk, Jens, Kampmann, Markus, Wijffels, Rene H., Martens, Dirk E., Niemann, Julia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9978186/
https://www.ncbi.nlm.nih.gov/pubmed/36873352
http://dx.doi.org/10.3389/fbioe.2023.1106292
Descripción
Sumario:Monoclonal antibodies (mAb) have gained enormous therapeutic application during the last decade as highly efficient and flexible tools for the treatment of various diseases. Despite this success, there remain opportunities to drive down the manufacturing costs of antibody-based therapies through cost efficiency measures. To reduce production costs, novel process intensification methods based on state-of-the-art fed-batch and perfusion have been implemented during the last few years. Building on process intensification, we demonstrate the feasibility and benefits of a novel, innovative hybrid process that combines the robustness of a fed-batch operation with the benefits of a complete media exchange enabled through a fluidized bed centrifuge (FBC). In an initial small-scale FBC-mimic screening, we investigated multiple process parameters, resulting in increased cell proliferation and an elongated viability profile. Consecutively, the most productive process scenario was transferred to the 5-L scale, further optimized and compared to a standard fed-batch process. Our data show that the novel hybrid process enables significantly higher peak cell densities (163%) and an impressive increase in mAb amount of approximately 254% while utilizing the same reactor size and process duration of the standard fed-batch operation. Furthermore, our data show comparable critical quality attributes (CQAs) between the processes and reveal scale-up possibilities and no need for extensive additional process monitoring. Therefore, this novel process intensification strategy yields strong potential for transfer into future industrial manufacturing processes.