Cargando…

Development and validation of a radiomics-based nomogram for predicting a major pathological response to neoadjuvant immunochemotherapy for patients with potentially resectable non-small cell lung cancer

INTRODUCTION: The treatment response to neoadjuvant immunochemotherapy varies among patients with potentially resectable non-small cell lung cancers (NSCLC) and may have severe immune-related adverse effects. We are currently unable to accurately predict therapeutic response. We aimed to develop a r...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Chaoyuan, Zhao, Wei, Xie, Junpeng, Lin, Huashan, Hu, Xingsheng, Li, Chang, Shang, Youlan, Wang, Yapeng, Jiang, Yingjia, Ding, Mengge, Peng, Muyun, Xu, Tian, Hu, Ao’ran, Huang, Yuda, Gao, Yuan, Liu, Xianling, Liu, Jun, Ma, Fang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9978193/
https://www.ncbi.nlm.nih.gov/pubmed/36875128
http://dx.doi.org/10.3389/fimmu.2023.1115291
_version_ 1784899464436121600
author Liu, Chaoyuan
Zhao, Wei
Xie, Junpeng
Lin, Huashan
Hu, Xingsheng
Li, Chang
Shang, Youlan
Wang, Yapeng
Jiang, Yingjia
Ding, Mengge
Peng, Muyun
Xu, Tian
Hu, Ao’ran
Huang, Yuda
Gao, Yuan
Liu, Xianling
Liu, Jun
Ma, Fang
author_facet Liu, Chaoyuan
Zhao, Wei
Xie, Junpeng
Lin, Huashan
Hu, Xingsheng
Li, Chang
Shang, Youlan
Wang, Yapeng
Jiang, Yingjia
Ding, Mengge
Peng, Muyun
Xu, Tian
Hu, Ao’ran
Huang, Yuda
Gao, Yuan
Liu, Xianling
Liu, Jun
Ma, Fang
author_sort Liu, Chaoyuan
collection PubMed
description INTRODUCTION: The treatment response to neoadjuvant immunochemotherapy varies among patients with potentially resectable non-small cell lung cancers (NSCLC) and may have severe immune-related adverse effects. We are currently unable to accurately predict therapeutic response. We aimed to develop a radiomics-based nomogram to predict a major pathological response (MPR) of potentially resectable NSCLC to neoadjuvant immunochemotherapy using pretreatment computed tomography (CT) images and clinical characteristics. METHODS: A total of 89 eligible participants were included and randomly divided into training (N=64) and validation (N=25) sets. Radiomic features were extracted from tumor volumes of interest in pretreatment CT images. Following data dimension reduction, feature selection, and radiomic signature building, a radiomics-clinical combined nomogram was developed using logistic regression analysis. RESULTS: The radiomics-clinical combined model achieved excellent discriminative performance, with AUCs of 0.84 (95% CI, 0.74-0.93) and 0.81(95% CI, 0.63-0.98) and accuracies of 80% and 80% in the training and validation sets, respectively. Decision curves analysis (DCA) indicated that the radiomics-clinical combined nomogram was clinically valuable. DISCUSSION: The constructed nomogram was able to predict MPR to neoadjuvant immunochemotherapy with a high degree of accuracy and robustness, suggesting that it is a convenient tool for assisting with the individualized management of patients with potentially resectable NSCLC.
format Online
Article
Text
id pubmed-9978193
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-99781932023-03-03 Development and validation of a radiomics-based nomogram for predicting a major pathological response to neoadjuvant immunochemotherapy for patients with potentially resectable non-small cell lung cancer Liu, Chaoyuan Zhao, Wei Xie, Junpeng Lin, Huashan Hu, Xingsheng Li, Chang Shang, Youlan Wang, Yapeng Jiang, Yingjia Ding, Mengge Peng, Muyun Xu, Tian Hu, Ao’ran Huang, Yuda Gao, Yuan Liu, Xianling Liu, Jun Ma, Fang Front Immunol Immunology INTRODUCTION: The treatment response to neoadjuvant immunochemotherapy varies among patients with potentially resectable non-small cell lung cancers (NSCLC) and may have severe immune-related adverse effects. We are currently unable to accurately predict therapeutic response. We aimed to develop a radiomics-based nomogram to predict a major pathological response (MPR) of potentially resectable NSCLC to neoadjuvant immunochemotherapy using pretreatment computed tomography (CT) images and clinical characteristics. METHODS: A total of 89 eligible participants were included and randomly divided into training (N=64) and validation (N=25) sets. Radiomic features were extracted from tumor volumes of interest in pretreatment CT images. Following data dimension reduction, feature selection, and radiomic signature building, a radiomics-clinical combined nomogram was developed using logistic regression analysis. RESULTS: The radiomics-clinical combined model achieved excellent discriminative performance, with AUCs of 0.84 (95% CI, 0.74-0.93) and 0.81(95% CI, 0.63-0.98) and accuracies of 80% and 80% in the training and validation sets, respectively. Decision curves analysis (DCA) indicated that the radiomics-clinical combined nomogram was clinically valuable. DISCUSSION: The constructed nomogram was able to predict MPR to neoadjuvant immunochemotherapy with a high degree of accuracy and robustness, suggesting that it is a convenient tool for assisting with the individualized management of patients with potentially resectable NSCLC. Frontiers Media S.A. 2023-02-16 /pmc/articles/PMC9978193/ /pubmed/36875128 http://dx.doi.org/10.3389/fimmu.2023.1115291 Text en Copyright © 2023 Liu, Zhao, Xie, Lin, Hu, Li, Shang, Wang, Jiang, Ding, Peng, Xu, Hu, Huang, Gao, Liu, Liu and Ma https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Immunology
Liu, Chaoyuan
Zhao, Wei
Xie, Junpeng
Lin, Huashan
Hu, Xingsheng
Li, Chang
Shang, Youlan
Wang, Yapeng
Jiang, Yingjia
Ding, Mengge
Peng, Muyun
Xu, Tian
Hu, Ao’ran
Huang, Yuda
Gao, Yuan
Liu, Xianling
Liu, Jun
Ma, Fang
Development and validation of a radiomics-based nomogram for predicting a major pathological response to neoadjuvant immunochemotherapy for patients with potentially resectable non-small cell lung cancer
title Development and validation of a radiomics-based nomogram for predicting a major pathological response to neoadjuvant immunochemotherapy for patients with potentially resectable non-small cell lung cancer
title_full Development and validation of a radiomics-based nomogram for predicting a major pathological response to neoadjuvant immunochemotherapy for patients with potentially resectable non-small cell lung cancer
title_fullStr Development and validation of a radiomics-based nomogram for predicting a major pathological response to neoadjuvant immunochemotherapy for patients with potentially resectable non-small cell lung cancer
title_full_unstemmed Development and validation of a radiomics-based nomogram for predicting a major pathological response to neoadjuvant immunochemotherapy for patients with potentially resectable non-small cell lung cancer
title_short Development and validation of a radiomics-based nomogram for predicting a major pathological response to neoadjuvant immunochemotherapy for patients with potentially resectable non-small cell lung cancer
title_sort development and validation of a radiomics-based nomogram for predicting a major pathological response to neoadjuvant immunochemotherapy for patients with potentially resectable non-small cell lung cancer
topic Immunology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9978193/
https://www.ncbi.nlm.nih.gov/pubmed/36875128
http://dx.doi.org/10.3389/fimmu.2023.1115291
work_keys_str_mv AT liuchaoyuan developmentandvalidationofaradiomicsbasednomogramforpredictingamajorpathologicalresponsetoneoadjuvantimmunochemotherapyforpatientswithpotentiallyresectablenonsmallcelllungcancer
AT zhaowei developmentandvalidationofaradiomicsbasednomogramforpredictingamajorpathologicalresponsetoneoadjuvantimmunochemotherapyforpatientswithpotentiallyresectablenonsmallcelllungcancer
AT xiejunpeng developmentandvalidationofaradiomicsbasednomogramforpredictingamajorpathologicalresponsetoneoadjuvantimmunochemotherapyforpatientswithpotentiallyresectablenonsmallcelllungcancer
AT linhuashan developmentandvalidationofaradiomicsbasednomogramforpredictingamajorpathologicalresponsetoneoadjuvantimmunochemotherapyforpatientswithpotentiallyresectablenonsmallcelllungcancer
AT huxingsheng developmentandvalidationofaradiomicsbasednomogramforpredictingamajorpathologicalresponsetoneoadjuvantimmunochemotherapyforpatientswithpotentiallyresectablenonsmallcelllungcancer
AT lichang developmentandvalidationofaradiomicsbasednomogramforpredictingamajorpathologicalresponsetoneoadjuvantimmunochemotherapyforpatientswithpotentiallyresectablenonsmallcelllungcancer
AT shangyoulan developmentandvalidationofaradiomicsbasednomogramforpredictingamajorpathologicalresponsetoneoadjuvantimmunochemotherapyforpatientswithpotentiallyresectablenonsmallcelllungcancer
AT wangyapeng developmentandvalidationofaradiomicsbasednomogramforpredictingamajorpathologicalresponsetoneoadjuvantimmunochemotherapyforpatientswithpotentiallyresectablenonsmallcelllungcancer
AT jiangyingjia developmentandvalidationofaradiomicsbasednomogramforpredictingamajorpathologicalresponsetoneoadjuvantimmunochemotherapyforpatientswithpotentiallyresectablenonsmallcelllungcancer
AT dingmengge developmentandvalidationofaradiomicsbasednomogramforpredictingamajorpathologicalresponsetoneoadjuvantimmunochemotherapyforpatientswithpotentiallyresectablenonsmallcelllungcancer
AT pengmuyun developmentandvalidationofaradiomicsbasednomogramforpredictingamajorpathologicalresponsetoneoadjuvantimmunochemotherapyforpatientswithpotentiallyresectablenonsmallcelllungcancer
AT xutian developmentandvalidationofaradiomicsbasednomogramforpredictingamajorpathologicalresponsetoneoadjuvantimmunochemotherapyforpatientswithpotentiallyresectablenonsmallcelllungcancer
AT huaoran developmentandvalidationofaradiomicsbasednomogramforpredictingamajorpathologicalresponsetoneoadjuvantimmunochemotherapyforpatientswithpotentiallyresectablenonsmallcelllungcancer
AT huangyuda developmentandvalidationofaradiomicsbasednomogramforpredictingamajorpathologicalresponsetoneoadjuvantimmunochemotherapyforpatientswithpotentiallyresectablenonsmallcelllungcancer
AT gaoyuan developmentandvalidationofaradiomicsbasednomogramforpredictingamajorpathologicalresponsetoneoadjuvantimmunochemotherapyforpatientswithpotentiallyresectablenonsmallcelllungcancer
AT liuxianling developmentandvalidationofaradiomicsbasednomogramforpredictingamajorpathologicalresponsetoneoadjuvantimmunochemotherapyforpatientswithpotentiallyresectablenonsmallcelllungcancer
AT liujun developmentandvalidationofaradiomicsbasednomogramforpredictingamajorpathologicalresponsetoneoadjuvantimmunochemotherapyforpatientswithpotentiallyresectablenonsmallcelllungcancer
AT mafang developmentandvalidationofaradiomicsbasednomogramforpredictingamajorpathologicalresponsetoneoadjuvantimmunochemotherapyforpatientswithpotentiallyresectablenonsmallcelllungcancer