Cargando…
Regularized adversarial learning for normalization of multi-batch untargeted metabolomics data
MOTIVATION: Untargeted metabolomics by mass spectrometry is the method of choice for unbiased analysis of molecules in complex samples of biological, clinical or environmental relevance. The exceptional versatility and sensitivity of modern high-resolution instruments allows profiling of thousands o...
Autores principales: | Dmitrenko, Andrei, Reid, Michelle, Zamboni, Nicola |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9978579/ https://www.ncbi.nlm.nih.gov/pubmed/36825815 http://dx.doi.org/10.1093/bioinformatics/btad096 |
Ejemplares similares
-
A system suitability testing platform for untargeted, high-resolution mass spectrometry
por: Dmitrenko, Andrei, et al.
Publicado: (2022) -
Improved batch correction in untargeted MS-based metabolomics
por: Wehrens, Ron, et al.
Publicado: (2016) -
Adversarially Robust Learning via Entropic Regularization
por: Jagatap, Gauri, et al.
Publicado: (2022) -
Normalizing Untargeted Periconceptional Urinary Metabolomics Data: A Comparison of Approaches
por: Rosen Vollmar, Ana K., et al.
Publicado: (2019) -
Using Out-of-Batch Reference Populations to Improve Untargeted Metabolomics for Screening Inborn Errors of Metabolism
por: Bongaerts, Michiel, et al.
Publicado: (2020)