Cargando…
A study on the clusterability of latent representations in image pipelines
Latent representations are a necessary component of cognitive artificial intelligence (AI) systems. Here, we investigate the performance of various sequential clustering algorithms on latent representations generated by autoencoder and convolutional neural network (CNN) models. We also introduce a n...
Autores principales: | Wheeldon, Adrian, Serb, Alexander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9978803/ https://www.ncbi.nlm.nih.gov/pubmed/36873564 http://dx.doi.org/10.3389/fninf.2023.1074653 |
Ejemplares similares
-
LatLRR-FCNs: Latent Low-Rank Representation With Fully Convolutional Networks for Medical Image Fusion
por: Xu, Zhengyuan, et al.
Publicado: (2021) -
Two-step clustering-based pipeline for big dynamic functional network connectivity data
por: Sendi, Mohammad S. E., et al.
Publicado: (2022) -
Group Analysis in FieldTrip of Time-Frequency Responses: A Pipeline for Reproducibility at Every Step of Processing, Going From Individual Sensor Space Representations to an Across-Group Source Space Representation
por: Andersen, Lau M.
Publicado: (2018) -
PANDA: a pipeline toolbox for analyzing brain diffusion images
por: Cui, Zaixu, et al.
Publicado: (2013) -
Editorial: Hardware for artificial intelligence
por: Boybat, Irem, et al.
Publicado: (2022)