Cargando…

In Vitro Generation of Luminal Vasculature in Liver Organoids: From Basic Vascular Biology to Vascularized Hepatic Organoids

Liver organoids have gained much attention in recent years for their potential applications to liver disease modeling and pharmacologic drug screening. Liver organoids produced in vitro reflect some aspects of the in vivo physiological and pathological conditions of the liver. However, the generatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Hyo Jin, Kim, Gyeongmin, Chi, Kyun Yoo, Kim, Jong-Hoon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society for Stem Cell Research 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9978835/
https://www.ncbi.nlm.nih.gov/pubmed/36310029
http://dx.doi.org/10.15283/ijsc22154
Descripción
Sumario:Liver organoids have gained much attention in recent years for their potential applications to liver disease modeling and pharmacologic drug screening. Liver organoids produced in vitro reflect some aspects of the in vivo physiological and pathological conditions of the liver. However, the generation of liver organoids with perfusable luminal vasculature remains a major challenge, hindering precise and effective modeling of liver diseases. Furthermore, vascularization is required for large organoids or assembloids to closely mimic the complexity of tissue architecture without cell death in the core region. A few studies have successfully generated liver organoids with endothelial cell networks, but most of these vascular networks produced luminal structures after being transplanted into tissues of host animals. Therefore, formation of luminal vasculature is an unmet need to overcome the limitation of liver organoids as an in vitro model investigating different acute and chronic liver diseases. Here, we provide an overview of the unique features of hepatic vasculature under pathophysiological conditions and summarize the biochemical and biophysical cues that drive vasculogenesis and angiogenesis in vitro. We also highlight recent progress in generating vascularized liver organoids in vitro and discuss potential strategies that may enable the generation of perfusable luminal vasculature in liver organoids.