Cargando…
Novel Bioengineering Strategies to Improve Bioavailability and In Vivo Circulation of H-Ferritin Nanocages by Surface Functionalization
[Image: see text] Due to its unique architecture and innate capability to specifically target cancer cells, ferritin has emerged as an attractive class of biomaterials for drug delivery. In many studies, various chemotherapeutics have been loaded into ferritin nanocages constituted by H-chains of fe...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9979315/ https://www.ncbi.nlm.nih.gov/pubmed/36873018 http://dx.doi.org/10.1021/acsomega.2c07794 |
_version_ | 1784899702136766464 |
---|---|
author | Sevieri, Marta Pinori, Mattia Chesi, Arianna Bonizzi, Arianna Sitia, Leopoldo Truffi, Marta Morasso, Carlo Corsi, Fabio Mazzucchelli, Serena |
author_facet | Sevieri, Marta Pinori, Mattia Chesi, Arianna Bonizzi, Arianna Sitia, Leopoldo Truffi, Marta Morasso, Carlo Corsi, Fabio Mazzucchelli, Serena |
author_sort | Sevieri, Marta |
collection | PubMed |
description | [Image: see text] Due to its unique architecture and innate capability to specifically target cancer cells, ferritin has emerged as an attractive class of biomaterials for drug delivery. In many studies, various chemotherapeutics have been loaded into ferritin nanocages constituted by H-chains of ferritin (HFn), and their related anti-tumor efficacy has been explored by employing different strategies. Despite the multiple advantages and the versatility of HFn-based nanocages, there are still many challenges to face for their reliable implementation as drug nanocarriers in the process of clinical translation. This review aims at providing an overview of the significant efforts expended during recent years to maximize the features of HFn in terms of increased stability and in vivo circulation. The most considerable modification strategies explored to improve bioavailability and pharmacokinetics profiles of HFn-based nanosystems will be discussed herein. |
format | Online Article Text |
id | pubmed-9979315 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-99793152023-03-03 Novel Bioengineering Strategies to Improve Bioavailability and In Vivo Circulation of H-Ferritin Nanocages by Surface Functionalization Sevieri, Marta Pinori, Mattia Chesi, Arianna Bonizzi, Arianna Sitia, Leopoldo Truffi, Marta Morasso, Carlo Corsi, Fabio Mazzucchelli, Serena ACS Omega [Image: see text] Due to its unique architecture and innate capability to specifically target cancer cells, ferritin has emerged as an attractive class of biomaterials for drug delivery. In many studies, various chemotherapeutics have been loaded into ferritin nanocages constituted by H-chains of ferritin (HFn), and their related anti-tumor efficacy has been explored by employing different strategies. Despite the multiple advantages and the versatility of HFn-based nanocages, there are still many challenges to face for their reliable implementation as drug nanocarriers in the process of clinical translation. This review aims at providing an overview of the significant efforts expended during recent years to maximize the features of HFn in terms of increased stability and in vivo circulation. The most considerable modification strategies explored to improve bioavailability and pharmacokinetics profiles of HFn-based nanosystems will be discussed herein. American Chemical Society 2023-02-17 /pmc/articles/PMC9979315/ /pubmed/36873018 http://dx.doi.org/10.1021/acsomega.2c07794 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Sevieri, Marta Pinori, Mattia Chesi, Arianna Bonizzi, Arianna Sitia, Leopoldo Truffi, Marta Morasso, Carlo Corsi, Fabio Mazzucchelli, Serena Novel Bioengineering Strategies to Improve Bioavailability and In Vivo Circulation of H-Ferritin Nanocages by Surface Functionalization |
title | Novel Bioengineering
Strategies to Improve Bioavailability
and In Vivo Circulation of H-Ferritin Nanocages
by Surface Functionalization |
title_full | Novel Bioengineering
Strategies to Improve Bioavailability
and In Vivo Circulation of H-Ferritin Nanocages
by Surface Functionalization |
title_fullStr | Novel Bioengineering
Strategies to Improve Bioavailability
and In Vivo Circulation of H-Ferritin Nanocages
by Surface Functionalization |
title_full_unstemmed | Novel Bioengineering
Strategies to Improve Bioavailability
and In Vivo Circulation of H-Ferritin Nanocages
by Surface Functionalization |
title_short | Novel Bioengineering
Strategies to Improve Bioavailability
and In Vivo Circulation of H-Ferritin Nanocages
by Surface Functionalization |
title_sort | novel bioengineering
strategies to improve bioavailability
and in vivo circulation of h-ferritin nanocages
by surface functionalization |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9979315/ https://www.ncbi.nlm.nih.gov/pubmed/36873018 http://dx.doi.org/10.1021/acsomega.2c07794 |
work_keys_str_mv | AT sevierimarta novelbioengineeringstrategiestoimprovebioavailabilityandinvivocirculationofhferritinnanocagesbysurfacefunctionalization AT pinorimattia novelbioengineeringstrategiestoimprovebioavailabilityandinvivocirculationofhferritinnanocagesbysurfacefunctionalization AT chesiarianna novelbioengineeringstrategiestoimprovebioavailabilityandinvivocirculationofhferritinnanocagesbysurfacefunctionalization AT bonizziarianna novelbioengineeringstrategiestoimprovebioavailabilityandinvivocirculationofhferritinnanocagesbysurfacefunctionalization AT sitialeopoldo novelbioengineeringstrategiestoimprovebioavailabilityandinvivocirculationofhferritinnanocagesbysurfacefunctionalization AT truffimarta novelbioengineeringstrategiestoimprovebioavailabilityandinvivocirculationofhferritinnanocagesbysurfacefunctionalization AT morassocarlo novelbioengineeringstrategiestoimprovebioavailabilityandinvivocirculationofhferritinnanocagesbysurfacefunctionalization AT corsifabio novelbioengineeringstrategiestoimprovebioavailabilityandinvivocirculationofhferritinnanocagesbysurfacefunctionalization AT mazzucchelliserena novelbioengineeringstrategiestoimprovebioavailabilityandinvivocirculationofhferritinnanocagesbysurfacefunctionalization |