Cargando…
Study on Screening and Evaluation of Foam Drainage Agents for Gas Wells with High Temperature and High Pressure
[Image: see text] Foam drainage gas recovery technology is a chemical method to solve the serious bottom-hole liquid loading in the middle and late stages of gas well production, and the optimization of foam drainage agents (referred to as FDAs) is the key to the technology. According to the actual...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9979355/ https://www.ncbi.nlm.nih.gov/pubmed/36873001 http://dx.doi.org/10.1021/acsomega.2c07715 |
_version_ | 1784899711631622144 |
---|---|
author | Guan, Jian Liang, Lihao Zhao, Yulong Sun, Ning Lu, Wei Zhen, Yuanshui |
author_facet | Guan, Jian Liang, Lihao Zhao, Yulong Sun, Ning Lu, Wei Zhen, Yuanshui |
author_sort | Guan, Jian |
collection | PubMed |
description | [Image: see text] Foam drainage gas recovery technology is a chemical method to solve the serious bottom-hole liquid loading in the middle and late stages of gas well production, and the optimization of foam drainage agents (referred to as FDAs) is the key to the technology. According to the actual reservoir conditions, a high-temperature and high-pressure (HTHP) evaluation device for FDAs was set up in this study. The six key properties of FDAs, such as HTHP resistance, dynamic liquid carrying capacity, oil resistance, and salinity resistance, were evaluated systematically. Taking initial foaming volume, half-life, comprehensive index, and liquid carrying rate as evaluation indexes, the FDA with the best performance was selected and the concentration was optimized. In addition, the experimental results were verified by surface tension measurement and electron microscopy observation. The results showed that the sulfonate compound surfactant (UT-6) had good foamability, excellent foam stability, and better oil resistance at high temperature and high pressure. In addition, UT-6 had stronger liquid carrying capacity at a lower concentration, which could meet the production requirement when the salinity was 80 000 mg/L. Therefore, compared with the other five FDAs, UT-6 was more suitable for HTHP gas wells in block X of the Bohai Bay Basin, whose optimal concentration was 0.25 wt %. Interestingly, the UT-6 solution had the lowest surface tension at the same concentration, with the generated bubbles being closely arranged and uniform in size. Moreover, in the UT-6 foam system, the drainage speed at the plateau boundary was relatively slower with the smallest bubble. It is expected that UT-6 will become a promising candidate for foam drainage gas recovery technology in HTHP gas wells. |
format | Online Article Text |
id | pubmed-9979355 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-99793552023-03-03 Study on Screening and Evaluation of Foam Drainage Agents for Gas Wells with High Temperature and High Pressure Guan, Jian Liang, Lihao Zhao, Yulong Sun, Ning Lu, Wei Zhen, Yuanshui ACS Omega [Image: see text] Foam drainage gas recovery technology is a chemical method to solve the serious bottom-hole liquid loading in the middle and late stages of gas well production, and the optimization of foam drainage agents (referred to as FDAs) is the key to the technology. According to the actual reservoir conditions, a high-temperature and high-pressure (HTHP) evaluation device for FDAs was set up in this study. The six key properties of FDAs, such as HTHP resistance, dynamic liquid carrying capacity, oil resistance, and salinity resistance, were evaluated systematically. Taking initial foaming volume, half-life, comprehensive index, and liquid carrying rate as evaluation indexes, the FDA with the best performance was selected and the concentration was optimized. In addition, the experimental results were verified by surface tension measurement and electron microscopy observation. The results showed that the sulfonate compound surfactant (UT-6) had good foamability, excellent foam stability, and better oil resistance at high temperature and high pressure. In addition, UT-6 had stronger liquid carrying capacity at a lower concentration, which could meet the production requirement when the salinity was 80 000 mg/L. Therefore, compared with the other five FDAs, UT-6 was more suitable for HTHP gas wells in block X of the Bohai Bay Basin, whose optimal concentration was 0.25 wt %. Interestingly, the UT-6 solution had the lowest surface tension at the same concentration, with the generated bubbles being closely arranged and uniform in size. Moreover, in the UT-6 foam system, the drainage speed at the plateau boundary was relatively slower with the smallest bubble. It is expected that UT-6 will become a promising candidate for foam drainage gas recovery technology in HTHP gas wells. American Chemical Society 2023-02-16 /pmc/articles/PMC9979355/ /pubmed/36873001 http://dx.doi.org/10.1021/acsomega.2c07715 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Guan, Jian Liang, Lihao Zhao, Yulong Sun, Ning Lu, Wei Zhen, Yuanshui Study on Screening and Evaluation of Foam Drainage Agents for Gas Wells with High Temperature and High Pressure |
title | Study on Screening
and Evaluation of Foam Drainage
Agents for Gas Wells with High Temperature and High Pressure |
title_full | Study on Screening
and Evaluation of Foam Drainage
Agents for Gas Wells with High Temperature and High Pressure |
title_fullStr | Study on Screening
and Evaluation of Foam Drainage
Agents for Gas Wells with High Temperature and High Pressure |
title_full_unstemmed | Study on Screening
and Evaluation of Foam Drainage
Agents for Gas Wells with High Temperature and High Pressure |
title_short | Study on Screening
and Evaluation of Foam Drainage
Agents for Gas Wells with High Temperature and High Pressure |
title_sort | study on screening
and evaluation of foam drainage
agents for gas wells with high temperature and high pressure |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9979355/ https://www.ncbi.nlm.nih.gov/pubmed/36873001 http://dx.doi.org/10.1021/acsomega.2c07715 |
work_keys_str_mv | AT guanjian studyonscreeningandevaluationoffoamdrainageagentsforgaswellswithhightemperatureandhighpressure AT lianglihao studyonscreeningandevaluationoffoamdrainageagentsforgaswellswithhightemperatureandhighpressure AT zhaoyulong studyonscreeningandevaluationoffoamdrainageagentsforgaswellswithhightemperatureandhighpressure AT sunning studyonscreeningandevaluationoffoamdrainageagentsforgaswellswithhightemperatureandhighpressure AT luwei studyonscreeningandevaluationoffoamdrainageagentsforgaswellswithhightemperatureandhighpressure AT zhenyuanshui studyonscreeningandevaluationoffoamdrainageagentsforgaswellswithhightemperatureandhighpressure |