Cargando…
Towards more efficient and robust evaluation of sepsis treatment with deep reinforcement learning
BACKGROUND: In recent years, several studies have applied advanced AI methods, i.e., deep reinforcement learning, in discovering more efficient treatment policies for sepsis. However, due to a paucity of understanding of sepsis itself, the existing approaches still face a severe evaluation challenge...
Autores principales: | Yu, Chao, Huang, Qikai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9979564/ https://www.ncbi.nlm.nih.gov/pubmed/36859257 http://dx.doi.org/10.1186/s12911-023-02126-2 |
Ejemplares similares
-
Toward robust and scalable deep spiking reinforcement learning
por: Akl, Mahmoud, et al.
Publicado: (2023) -
Adversarial Robustness of Deep Reinforcement Learning Based Dynamic Recommender Systems
por: Wang, Siyu, et al.
Publicado: (2022) -
A value-based deep reinforcement learning model with human expertise in optimal treatment of sepsis
por: Wu, XiaoDan, et al.
Publicado: (2023) -
Unifying cardiovascular modelling with deep reinforcement learning for uncertainty aware control of sepsis treatment
por: Nanayakkara, Thesath, et al.
Publicado: (2022) -
Robust ASV Navigation Through Ground to Water Cross-Domain Deep Reinforcement Learning
por: Lambert, Reeve, et al.
Publicado: (2021)