Cargando…
Gaussian Process Regression Models for Predicting Atomic Energies and Multipole Moments
[Image: see text] Developing a force field is a difficult task because its design is typically pulled in opposite directions by speed and accuracy. FFLUX breaks this trend by utilizing Gaussian process regression (GPR) to predict, at ab initio accuracy, atomic energies and multipole moments as obtai...
Autores principales: | Burn, Matthew J., Popelier, Paul L. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9979601/ https://www.ncbi.nlm.nih.gov/pubmed/36757024 http://dx.doi.org/10.1021/acs.jctc.2c00731 |
Ejemplares similares
-
Prediction of conformationally dependent atomic multipole moments in carbohydrates
por: Cardamone, Salvatore, et al.
Publicado: (2015) -
Producing chemically accurate atomic Gaussian process regression models by active learning for molecular simulation
por: Burn, Matthew J., et al.
Publicado: (2022) -
Construction of
a Gaussian Process Regression Model
of Formamide for Use in Molecular Simulations
por: Brown, Matthew L., et al.
Publicado: (2023) -
Skyrmions and their pion multipole moments
por: Manton, N S
Publicado: (1994) -
Multipole moments of stellar oscillation modes
por: Reisenegger, A
Publicado: (1993)