Cargando…
Polymer Informatics at Scale with Multitask Graph Neural Networks
[Image: see text] Artificial intelligence-based methods are becoming increasingly effective at screening libraries of polymers down to a selection that is manageable for experimental inquiry. The vast majority of presently adopted approaches for polymer screening rely on handcrafted chemostructural...
Autores principales: | Gurnani, Rishi, Kuenneth, Christopher, Toland, Aubrey, Ramprasad, Rampi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9979603/ https://www.ncbi.nlm.nih.gov/pubmed/36873627 http://dx.doi.org/10.1021/acs.chemmater.2c02991 |
Ejemplares similares
-
polyBERT: a chemical language model to enable fully machine-driven ultrafast polymer informatics
por: Kuenneth, Christopher, et al.
Publicado: (2023) -
Polymer informatics with multi-task learning
por: Kuenneth, Christopher, et al.
Publicado: (2021) -
Multitask Learning with Graph Neural Network for Travel Time Estimation
por: Yang, Ling, et al.
Publicado: (2022) -
A general-purpose material property data extraction pipeline from large polymer corpora using natural language processing
por: Shetty, Pranav, et al.
Publicado: (2023) -
Construction of Genealogical Knowledge Graphs From Obituaries: Multitask Neural Network Extraction System
por: He, Kai, et al.
Publicado: (2021)