Cargando…

Resolution of Electronic States in Heisenberg Cluster Models within the Unitary Group Approach

[Image: see text] In this work ground and excited electronic states of Heisenberg cluster models, in the form of configuration interaction many-body wave functions, are characterized within the spin-adapted Graphical Unitary Group Approach framework, and relying on a novel combined unitary and symme...

Descripción completa

Detalles Bibliográficos
Autores principales: Li Manni, Giovanni, Kats, Daniel, Liebermann, Niklas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9979614/
https://www.ncbi.nlm.nih.gov/pubmed/36735906
http://dx.doi.org/10.1021/acs.jctc.2c01132
_version_ 1784899760232071168
author Li Manni, Giovanni
Kats, Daniel
Liebermann, Niklas
author_facet Li Manni, Giovanni
Kats, Daniel
Liebermann, Niklas
author_sort Li Manni, Giovanni
collection PubMed
description [Image: see text] In this work ground and excited electronic states of Heisenberg cluster models, in the form of configuration interaction many-body wave functions, are characterized within the spin-adapted Graphical Unitary Group Approach framework, and relying on a novel combined unitary and symmetric group approach. Finite-size cluster models of well-defined point-group symmetry and of general local-spin [Image: see text] are presented, including J(1)–J(2) triangular and tetrahedral clusters, which are often used to describe magnetic interactions in biological and biomimetic polynuclear transition metal clusters with unique catalytic activity, such as nitrogen fixation and photosynthesis. We show that a unique block-diagonal structure of the underlying Hamiltonian matrix in the spin-adapted basis emerges when an optimal lattice site ordering is chosen that reflects the internal symmetries of the model investigated. The block-diagonal structure is bound to the commutation relations between cumulative spin operators and the Hamiltonian operator, that in turn depend on the geometry of the cluster investigated. The many-body basis transformation, in the form of the orbital/site reordering, exposes such commutation relations. These commutation relations represent a rigorous and formal demonstration of the block-diagonal structure in Hamiltonian matrices and the compression of the corresponding spin-adapted many-body wave functions. As a direct consequence of the block-diagonal structure of the Hamiltonian matrix, it is possible to selectively optimize electronic excited states without the overhead of calculating the lower-energy states by simply relying on the initial ansatz for the targeted wave function. Additionally, more compact many-body wave functions are obtained. In extreme cases, electronic states are precisely described by a single configuration state function, despite the curse of dimensionality of the corresponding Hilbert space. These findings are crucial in the electronic structure theory framework, for they offer a conceptual route toward wave functions of reduced multireference character, that can be optimized more easily by approximated eigensolvers and are of more facile physical interpretation. They open the way to study larger ab initio and model Hamiltonians of increasingly larger number of correlated electrons, while keeping the computational costs at their lowest. In particular, these elements will expand the potential of electronic structure methods in understanding magnetic interactions in exchange-coupled polynuclear transition metal clusters.
format Online
Article
Text
id pubmed-9979614
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-99796142023-03-03 Resolution of Electronic States in Heisenberg Cluster Models within the Unitary Group Approach Li Manni, Giovanni Kats, Daniel Liebermann, Niklas J Chem Theory Comput [Image: see text] In this work ground and excited electronic states of Heisenberg cluster models, in the form of configuration interaction many-body wave functions, are characterized within the spin-adapted Graphical Unitary Group Approach framework, and relying on a novel combined unitary and symmetric group approach. Finite-size cluster models of well-defined point-group symmetry and of general local-spin [Image: see text] are presented, including J(1)–J(2) triangular and tetrahedral clusters, which are often used to describe magnetic interactions in biological and biomimetic polynuclear transition metal clusters with unique catalytic activity, such as nitrogen fixation and photosynthesis. We show that a unique block-diagonal structure of the underlying Hamiltonian matrix in the spin-adapted basis emerges when an optimal lattice site ordering is chosen that reflects the internal symmetries of the model investigated. The block-diagonal structure is bound to the commutation relations between cumulative spin operators and the Hamiltonian operator, that in turn depend on the geometry of the cluster investigated. The many-body basis transformation, in the form of the orbital/site reordering, exposes such commutation relations. These commutation relations represent a rigorous and formal demonstration of the block-diagonal structure in Hamiltonian matrices and the compression of the corresponding spin-adapted many-body wave functions. As a direct consequence of the block-diagonal structure of the Hamiltonian matrix, it is possible to selectively optimize electronic excited states without the overhead of calculating the lower-energy states by simply relying on the initial ansatz for the targeted wave function. Additionally, more compact many-body wave functions are obtained. In extreme cases, electronic states are precisely described by a single configuration state function, despite the curse of dimensionality of the corresponding Hilbert space. These findings are crucial in the electronic structure theory framework, for they offer a conceptual route toward wave functions of reduced multireference character, that can be optimized more easily by approximated eigensolvers and are of more facile physical interpretation. They open the way to study larger ab initio and model Hamiltonians of increasingly larger number of correlated electrons, while keeping the computational costs at their lowest. In particular, these elements will expand the potential of electronic structure methods in understanding magnetic interactions in exchange-coupled polynuclear transition metal clusters. American Chemical Society 2023-02-03 /pmc/articles/PMC9979614/ /pubmed/36735906 http://dx.doi.org/10.1021/acs.jctc.2c01132 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Li Manni, Giovanni
Kats, Daniel
Liebermann, Niklas
Resolution of Electronic States in Heisenberg Cluster Models within the Unitary Group Approach
title Resolution of Electronic States in Heisenberg Cluster Models within the Unitary Group Approach
title_full Resolution of Electronic States in Heisenberg Cluster Models within the Unitary Group Approach
title_fullStr Resolution of Electronic States in Heisenberg Cluster Models within the Unitary Group Approach
title_full_unstemmed Resolution of Electronic States in Heisenberg Cluster Models within the Unitary Group Approach
title_short Resolution of Electronic States in Heisenberg Cluster Models within the Unitary Group Approach
title_sort resolution of electronic states in heisenberg cluster models within the unitary group approach
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9979614/
https://www.ncbi.nlm.nih.gov/pubmed/36735906
http://dx.doi.org/10.1021/acs.jctc.2c01132
work_keys_str_mv AT limannigiovanni resolutionofelectronicstatesinheisenbergclustermodelswithintheunitarygroupapproach
AT katsdaniel resolutionofelectronicstatesinheisenbergclustermodelswithintheunitarygroupapproach
AT liebermannniklas resolutionofelectronicstatesinheisenbergclustermodelswithintheunitarygroupapproach