Cargando…

Spatio-temporal classification for polyp diagnosis

Colonoscopy remains the gold standard investigation for colorectal cancer screening as it offers the opportunity to both detect and resect pre-cancerous polyps. Computer-aided polyp characterisation can determine which polyps need polypectomy and recent deep learning-based approaches have shown prom...

Descripción completa

Detalles Bibliográficos
Autores principales: González-Bueno Puyal, Juana, Brandao, Patrick, Ahmad, Omer F., Bhatia, Kanwal K., Toth, Daniel, Kader, Rawen, Lovat, Laurence, Mountney, Peter, Stoyanov, Danail
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Optica Publishing Group 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9979670/
https://www.ncbi.nlm.nih.gov/pubmed/36874484
http://dx.doi.org/10.1364/BOE.473446
_version_ 1784899768946786304
author González-Bueno Puyal, Juana
Brandao, Patrick
Ahmad, Omer F.
Bhatia, Kanwal K.
Toth, Daniel
Kader, Rawen
Lovat, Laurence
Mountney, Peter
Stoyanov, Danail
author_facet González-Bueno Puyal, Juana
Brandao, Patrick
Ahmad, Omer F.
Bhatia, Kanwal K.
Toth, Daniel
Kader, Rawen
Lovat, Laurence
Mountney, Peter
Stoyanov, Danail
author_sort González-Bueno Puyal, Juana
collection PubMed
description Colonoscopy remains the gold standard investigation for colorectal cancer screening as it offers the opportunity to both detect and resect pre-cancerous polyps. Computer-aided polyp characterisation can determine which polyps need polypectomy and recent deep learning-based approaches have shown promising results as clinical decision support tools. Yet polyp appearance during a procedure can vary, making automatic predictions unstable. In this paper, we investigate the use of spatio-temporal information to improve the performance of lesions classification as adenoma or non-adenoma. Two methods are implemented showing an increase in performance and robustness during extensive experiments both on internal and openly available benchmark datasets.
format Online
Article
Text
id pubmed-9979670
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Optica Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-99796702023-03-03 Spatio-temporal classification for polyp diagnosis González-Bueno Puyal, Juana Brandao, Patrick Ahmad, Omer F. Bhatia, Kanwal K. Toth, Daniel Kader, Rawen Lovat, Laurence Mountney, Peter Stoyanov, Danail Biomed Opt Express Article Colonoscopy remains the gold standard investigation for colorectal cancer screening as it offers the opportunity to both detect and resect pre-cancerous polyps. Computer-aided polyp characterisation can determine which polyps need polypectomy and recent deep learning-based approaches have shown promising results as clinical decision support tools. Yet polyp appearance during a procedure can vary, making automatic predictions unstable. In this paper, we investigate the use of spatio-temporal information to improve the performance of lesions classification as adenoma or non-adenoma. Two methods are implemented showing an increase in performance and robustness during extensive experiments both on internal and openly available benchmark datasets. Optica Publishing Group 2023-01-04 /pmc/articles/PMC9979670/ /pubmed/36874484 http://dx.doi.org/10.1364/BOE.473446 Text en Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/
spellingShingle Article
González-Bueno Puyal, Juana
Brandao, Patrick
Ahmad, Omer F.
Bhatia, Kanwal K.
Toth, Daniel
Kader, Rawen
Lovat, Laurence
Mountney, Peter
Stoyanov, Danail
Spatio-temporal classification for polyp diagnosis
title Spatio-temporal classification for polyp diagnosis
title_full Spatio-temporal classification for polyp diagnosis
title_fullStr Spatio-temporal classification for polyp diagnosis
title_full_unstemmed Spatio-temporal classification for polyp diagnosis
title_short Spatio-temporal classification for polyp diagnosis
title_sort spatio-temporal classification for polyp diagnosis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9979670/
https://www.ncbi.nlm.nih.gov/pubmed/36874484
http://dx.doi.org/10.1364/BOE.473446
work_keys_str_mv AT gonzalezbuenopuyaljuana spatiotemporalclassificationforpolypdiagnosis
AT brandaopatrick spatiotemporalclassificationforpolypdiagnosis
AT ahmadomerf spatiotemporalclassificationforpolypdiagnosis
AT bhatiakanwalk spatiotemporalclassificationforpolypdiagnosis
AT tothdaniel spatiotemporalclassificationforpolypdiagnosis
AT kaderrawen spatiotemporalclassificationforpolypdiagnosis
AT lovatlaurence spatiotemporalclassificationforpolypdiagnosis
AT mountneypeter spatiotemporalclassificationforpolypdiagnosis
AT stoyanovdanail spatiotemporalclassificationforpolypdiagnosis