Cargando…
Spatio-temporal classification for polyp diagnosis
Colonoscopy remains the gold standard investigation for colorectal cancer screening as it offers the opportunity to both detect and resect pre-cancerous polyps. Computer-aided polyp characterisation can determine which polyps need polypectomy and recent deep learning-based approaches have shown prom...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Optica Publishing Group
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9979670/ https://www.ncbi.nlm.nih.gov/pubmed/36874484 http://dx.doi.org/10.1364/BOE.473446 |
_version_ | 1784899768946786304 |
---|---|
author | González-Bueno Puyal, Juana Brandao, Patrick Ahmad, Omer F. Bhatia, Kanwal K. Toth, Daniel Kader, Rawen Lovat, Laurence Mountney, Peter Stoyanov, Danail |
author_facet | González-Bueno Puyal, Juana Brandao, Patrick Ahmad, Omer F. Bhatia, Kanwal K. Toth, Daniel Kader, Rawen Lovat, Laurence Mountney, Peter Stoyanov, Danail |
author_sort | González-Bueno Puyal, Juana |
collection | PubMed |
description | Colonoscopy remains the gold standard investigation for colorectal cancer screening as it offers the opportunity to both detect and resect pre-cancerous polyps. Computer-aided polyp characterisation can determine which polyps need polypectomy and recent deep learning-based approaches have shown promising results as clinical decision support tools. Yet polyp appearance during a procedure can vary, making automatic predictions unstable. In this paper, we investigate the use of spatio-temporal information to improve the performance of lesions classification as adenoma or non-adenoma. Two methods are implemented showing an increase in performance and robustness during extensive experiments both on internal and openly available benchmark datasets. |
format | Online Article Text |
id | pubmed-9979670 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Optica Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-99796702023-03-03 Spatio-temporal classification for polyp diagnosis González-Bueno Puyal, Juana Brandao, Patrick Ahmad, Omer F. Bhatia, Kanwal K. Toth, Daniel Kader, Rawen Lovat, Laurence Mountney, Peter Stoyanov, Danail Biomed Opt Express Article Colonoscopy remains the gold standard investigation for colorectal cancer screening as it offers the opportunity to both detect and resect pre-cancerous polyps. Computer-aided polyp characterisation can determine which polyps need polypectomy and recent deep learning-based approaches have shown promising results as clinical decision support tools. Yet polyp appearance during a procedure can vary, making automatic predictions unstable. In this paper, we investigate the use of spatio-temporal information to improve the performance of lesions classification as adenoma or non-adenoma. Two methods are implemented showing an increase in performance and robustness during extensive experiments both on internal and openly available benchmark datasets. Optica Publishing Group 2023-01-04 /pmc/articles/PMC9979670/ /pubmed/36874484 http://dx.doi.org/10.1364/BOE.473446 Text en Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article González-Bueno Puyal, Juana Brandao, Patrick Ahmad, Omer F. Bhatia, Kanwal K. Toth, Daniel Kader, Rawen Lovat, Laurence Mountney, Peter Stoyanov, Danail Spatio-temporal classification for polyp diagnosis |
title | Spatio-temporal classification for polyp
diagnosis |
title_full | Spatio-temporal classification for polyp
diagnosis |
title_fullStr | Spatio-temporal classification for polyp
diagnosis |
title_full_unstemmed | Spatio-temporal classification for polyp
diagnosis |
title_short | Spatio-temporal classification for polyp
diagnosis |
title_sort | spatio-temporal classification for polyp
diagnosis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9979670/ https://www.ncbi.nlm.nih.gov/pubmed/36874484 http://dx.doi.org/10.1364/BOE.473446 |
work_keys_str_mv | AT gonzalezbuenopuyaljuana spatiotemporalclassificationforpolypdiagnosis AT brandaopatrick spatiotemporalclassificationforpolypdiagnosis AT ahmadomerf spatiotemporalclassificationforpolypdiagnosis AT bhatiakanwalk spatiotemporalclassificationforpolypdiagnosis AT tothdaniel spatiotemporalclassificationforpolypdiagnosis AT kaderrawen spatiotemporalclassificationforpolypdiagnosis AT lovatlaurence spatiotemporalclassificationforpolypdiagnosis AT mountneypeter spatiotemporalclassificationforpolypdiagnosis AT stoyanovdanail spatiotemporalclassificationforpolypdiagnosis |