Cargando…

The pluripotency factor Tex10 finetunes Wnt signaling for PGC and male germline development

Testis-specific transcript 10 (Tex10) is a critical factor for pluripotent stem cell maintenance and preimplantation development. Here, we dissect its late developmental roles in primordial germ cell (PGC) specification and spermatogenesis using cellular and animal models. We discover that Tex10 bin...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Dan, Yang, Jihong, Ma, Fanglin, Malik, Vikas, Zang, Ruge, Shi, Xianle, Huang, Xin, Zhou, Hongwei, Wang, Jianlong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9980098/
https://www.ncbi.nlm.nih.gov/pubmed/36865339
http://dx.doi.org/10.1101/2023.02.23.529824
Descripción
Sumario:Testis-specific transcript 10 (Tex10) is a critical factor for pluripotent stem cell maintenance and preimplantation development. Here, we dissect its late developmental roles in primordial germ cell (PGC) specification and spermatogenesis using cellular and animal models. We discover that Tex10 binds the Wnt negative regulator genes, marked by H3K4me3, at the PGC-like cell (PGCLC) stage in restraining Wnt signaling. Depletion and overexpression of Tex10 hyperactivate and attenuate the Wnt signaling, resulting in compromised and enhanced PGCLC specification efficiency, respectively. Using the Tex10 conditional knockout mouse models combined with single-cell RNA sequencing, we further uncover critical roles of Tex10 in spermatogenesis with Tex10 loss causing reduced sperm number and motility associated with compromised round spermatid formation. Notably, defective spermatogenesis in Tex10 knockout mice correlates with aberrant Wnt signaling upregulation. Therefore, our study establishes Tex10 as a previously unappreciated player in PGC specification and male germline development by fine-tuning Wnt signaling.