Cargando…
Cyclic peptide structure prediction and design using AlphaFold
Deep learning networks offer considerable opportunities for accurate structure prediction and design of biomolecules. While cyclic peptides have gained significant traction as a therapeutic modality, developing deep learning methods for designing such peptides has been slow, mostly due to the small...
Autores principales: | Rettie, Stephen A., Campbell, Katelyn V., Bera, Asim K., Kang, Alex, Kozlov, Simon, De La Cruz, Joshmyn, Adebomi, Victor, Zhou, Guangfeng, DiMaio, Frank, Ovchinnikov, Sergey, Bhardwaj, Gaurav |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9980166/ https://www.ncbi.nlm.nih.gov/pubmed/36865323 http://dx.doi.org/10.1101/2023.02.25.529956 |
Ejemplares similares
-
Design of Cyclic Peptides Targeting Protein–Protein Interactions Using AlphaFold
por: Kosugi, Takatsugu, et al.
Publicado: (2023) -
AlphaFold and the future of structural biology
por: Read, Randy J., et al.
Publicado: (2023) -
Accurate modeling of peptide-MHC structures with AlphaFold
por: Mikhaylov, Victor, et al.
Publicado: (2023) -
AlphaFold, Artificial
Intelligence (AI), and Allostery
por: Nussinov, Ruth, et al.
Publicado: (2022) -
Applying and improving AlphaFold at CASP14
por: Jumper, John, et al.
Publicado: (2021)