Cargando…
A frontosensory circuit for visual context processing is synchronous in the theta/alpha band
Visual processing is strongly influenced by context. Stimuli that deviate from contextual regularities elicit augmented responses in primary visual cortex (V1). These heightened responses, known as “deviance detection,” require both inhibition local to V1 and top-down modulation from higher areas of...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9980180/ https://www.ncbi.nlm.nih.gov/pubmed/36865311 http://dx.doi.org/10.1101/2023.02.25.530044 |
_version_ | 1784899863038656512 |
---|---|
author | Bastos, Georgia Holmes, Jacob T. Ross, Jordan M. Rader, Anna M. Gallimore, Connor G. Peterka, Darcy S. Hamm, Jordan P. |
author_facet | Bastos, Georgia Holmes, Jacob T. Ross, Jordan M. Rader, Anna M. Gallimore, Connor G. Peterka, Darcy S. Hamm, Jordan P. |
author_sort | Bastos, Georgia |
collection | PubMed |
description | Visual processing is strongly influenced by context. Stimuli that deviate from contextual regularities elicit augmented responses in primary visual cortex (V1). These heightened responses, known as “deviance detection,” require both inhibition local to V1 and top-down modulation from higher areas of cortex. Here we investigated the spatiotemporal mechanisms by which these circuit elements interact to support deviance detection. Local field potential recordings in mice in anterior cingulate area (ACa) and V1 during a visual oddball paradigm showed that interregional synchrony peaks in the theta/alpha band (6–12 Hz). Two-photon imaging in V1 revealed that mainly pyramidal neurons exhibited deviance detection, while vasointestinal peptide-positive interneurons (VIPs) increased activity and somatostatin-positive interneurons (SSTs) decreased activity (adapted) to redundant stimuli (prior to deviants). Optogenetic drive of ACa-V1 inputs at 6–12 Hz activated V1-VIPs but inhibited V1-SSTs, mirroring the dynamics present during the oddball paradigm. Chemogenetic inhibition of VIP interneurons disrupted ACa-V1 synchrony and deviance detection responses in V1. These results outline spatiotemporal and interneuron-specific mechanisms of top-down modulation that support visual context processing. |
format | Online Article Text |
id | pubmed-9980180 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-99801802023-03-03 A frontosensory circuit for visual context processing is synchronous in the theta/alpha band Bastos, Georgia Holmes, Jacob T. Ross, Jordan M. Rader, Anna M. Gallimore, Connor G. Peterka, Darcy S. Hamm, Jordan P. bioRxiv Article Visual processing is strongly influenced by context. Stimuli that deviate from contextual regularities elicit augmented responses in primary visual cortex (V1). These heightened responses, known as “deviance detection,” require both inhibition local to V1 and top-down modulation from higher areas of cortex. Here we investigated the spatiotemporal mechanisms by which these circuit elements interact to support deviance detection. Local field potential recordings in mice in anterior cingulate area (ACa) and V1 during a visual oddball paradigm showed that interregional synchrony peaks in the theta/alpha band (6–12 Hz). Two-photon imaging in V1 revealed that mainly pyramidal neurons exhibited deviance detection, while vasointestinal peptide-positive interneurons (VIPs) increased activity and somatostatin-positive interneurons (SSTs) decreased activity (adapted) to redundant stimuli (prior to deviants). Optogenetic drive of ACa-V1 inputs at 6–12 Hz activated V1-VIPs but inhibited V1-SSTs, mirroring the dynamics present during the oddball paradigm. Chemogenetic inhibition of VIP interneurons disrupted ACa-V1 synchrony and deviance detection responses in V1. These results outline spatiotemporal and interneuron-specific mechanisms of top-down modulation that support visual context processing. Cold Spring Harbor Laboratory 2023-02-25 /pmc/articles/PMC9980180/ /pubmed/36865311 http://dx.doi.org/10.1101/2023.02.25.530044 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Bastos, Georgia Holmes, Jacob T. Ross, Jordan M. Rader, Anna M. Gallimore, Connor G. Peterka, Darcy S. Hamm, Jordan P. A frontosensory circuit for visual context processing is synchronous in the theta/alpha band |
title | A frontosensory circuit for visual context processing is synchronous in the theta/alpha band |
title_full | A frontosensory circuit for visual context processing is synchronous in the theta/alpha band |
title_fullStr | A frontosensory circuit for visual context processing is synchronous in the theta/alpha band |
title_full_unstemmed | A frontosensory circuit for visual context processing is synchronous in the theta/alpha band |
title_short | A frontosensory circuit for visual context processing is synchronous in the theta/alpha band |
title_sort | frontosensory circuit for visual context processing is synchronous in the theta/alpha band |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9980180/ https://www.ncbi.nlm.nih.gov/pubmed/36865311 http://dx.doi.org/10.1101/2023.02.25.530044 |
work_keys_str_mv | AT bastosgeorgia afrontosensorycircuitforvisualcontextprocessingissynchronousinthethetaalphaband AT holmesjacobt afrontosensorycircuitforvisualcontextprocessingissynchronousinthethetaalphaband AT rossjordanm afrontosensorycircuitforvisualcontextprocessingissynchronousinthethetaalphaband AT raderannam afrontosensorycircuitforvisualcontextprocessingissynchronousinthethetaalphaband AT gallimoreconnorg afrontosensorycircuitforvisualcontextprocessingissynchronousinthethetaalphaband AT peterkadarcys afrontosensorycircuitforvisualcontextprocessingissynchronousinthethetaalphaband AT hammjordanp afrontosensorycircuitforvisualcontextprocessingissynchronousinthethetaalphaband AT bastosgeorgia frontosensorycircuitforvisualcontextprocessingissynchronousinthethetaalphaband AT holmesjacobt frontosensorycircuitforvisualcontextprocessingissynchronousinthethetaalphaband AT rossjordanm frontosensorycircuitforvisualcontextprocessingissynchronousinthethetaalphaband AT raderannam frontosensorycircuitforvisualcontextprocessingissynchronousinthethetaalphaband AT gallimoreconnorg frontosensorycircuitforvisualcontextprocessingissynchronousinthethetaalphaband AT peterkadarcys frontosensorycircuitforvisualcontextprocessingissynchronousinthethetaalphaband AT hammjordanp frontosensorycircuitforvisualcontextprocessingissynchronousinthethetaalphaband |