Cargando…

A frontosensory circuit for visual context processing is synchronous in the theta/alpha band

Visual processing is strongly influenced by context. Stimuli that deviate from contextual regularities elicit augmented responses in primary visual cortex (V1). These heightened responses, known as “deviance detection,” require both inhibition local to V1 and top-down modulation from higher areas of...

Descripción completa

Detalles Bibliográficos
Autores principales: Bastos, Georgia, Holmes, Jacob T., Ross, Jordan M., Rader, Anna M., Gallimore, Connor G., Peterka, Darcy S., Hamm, Jordan P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9980180/
https://www.ncbi.nlm.nih.gov/pubmed/36865311
http://dx.doi.org/10.1101/2023.02.25.530044
_version_ 1784899863038656512
author Bastos, Georgia
Holmes, Jacob T.
Ross, Jordan M.
Rader, Anna M.
Gallimore, Connor G.
Peterka, Darcy S.
Hamm, Jordan P.
author_facet Bastos, Georgia
Holmes, Jacob T.
Ross, Jordan M.
Rader, Anna M.
Gallimore, Connor G.
Peterka, Darcy S.
Hamm, Jordan P.
author_sort Bastos, Georgia
collection PubMed
description Visual processing is strongly influenced by context. Stimuli that deviate from contextual regularities elicit augmented responses in primary visual cortex (V1). These heightened responses, known as “deviance detection,” require both inhibition local to V1 and top-down modulation from higher areas of cortex. Here we investigated the spatiotemporal mechanisms by which these circuit elements interact to support deviance detection. Local field potential recordings in mice in anterior cingulate area (ACa) and V1 during a visual oddball paradigm showed that interregional synchrony peaks in the theta/alpha band (6–12 Hz). Two-photon imaging in V1 revealed that mainly pyramidal neurons exhibited deviance detection, while vasointestinal peptide-positive interneurons (VIPs) increased activity and somatostatin-positive interneurons (SSTs) decreased activity (adapted) to redundant stimuli (prior to deviants). Optogenetic drive of ACa-V1 inputs at 6–12 Hz activated V1-VIPs but inhibited V1-SSTs, mirroring the dynamics present during the oddball paradigm. Chemogenetic inhibition of VIP interneurons disrupted ACa-V1 synchrony and deviance detection responses in V1. These results outline spatiotemporal and interneuron-specific mechanisms of top-down modulation that support visual context processing.
format Online
Article
Text
id pubmed-9980180
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-99801802023-03-03 A frontosensory circuit for visual context processing is synchronous in the theta/alpha band Bastos, Georgia Holmes, Jacob T. Ross, Jordan M. Rader, Anna M. Gallimore, Connor G. Peterka, Darcy S. Hamm, Jordan P. bioRxiv Article Visual processing is strongly influenced by context. Stimuli that deviate from contextual regularities elicit augmented responses in primary visual cortex (V1). These heightened responses, known as “deviance detection,” require both inhibition local to V1 and top-down modulation from higher areas of cortex. Here we investigated the spatiotemporal mechanisms by which these circuit elements interact to support deviance detection. Local field potential recordings in mice in anterior cingulate area (ACa) and V1 during a visual oddball paradigm showed that interregional synchrony peaks in the theta/alpha band (6–12 Hz). Two-photon imaging in V1 revealed that mainly pyramidal neurons exhibited deviance detection, while vasointestinal peptide-positive interneurons (VIPs) increased activity and somatostatin-positive interneurons (SSTs) decreased activity (adapted) to redundant stimuli (prior to deviants). Optogenetic drive of ACa-V1 inputs at 6–12 Hz activated V1-VIPs but inhibited V1-SSTs, mirroring the dynamics present during the oddball paradigm. Chemogenetic inhibition of VIP interneurons disrupted ACa-V1 synchrony and deviance detection responses in V1. These results outline spatiotemporal and interneuron-specific mechanisms of top-down modulation that support visual context processing. Cold Spring Harbor Laboratory 2023-02-25 /pmc/articles/PMC9980180/ /pubmed/36865311 http://dx.doi.org/10.1101/2023.02.25.530044 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Bastos, Georgia
Holmes, Jacob T.
Ross, Jordan M.
Rader, Anna M.
Gallimore, Connor G.
Peterka, Darcy S.
Hamm, Jordan P.
A frontosensory circuit for visual context processing is synchronous in the theta/alpha band
title A frontosensory circuit for visual context processing is synchronous in the theta/alpha band
title_full A frontosensory circuit for visual context processing is synchronous in the theta/alpha band
title_fullStr A frontosensory circuit for visual context processing is synchronous in the theta/alpha band
title_full_unstemmed A frontosensory circuit for visual context processing is synchronous in the theta/alpha band
title_short A frontosensory circuit for visual context processing is synchronous in the theta/alpha band
title_sort frontosensory circuit for visual context processing is synchronous in the theta/alpha band
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9980180/
https://www.ncbi.nlm.nih.gov/pubmed/36865311
http://dx.doi.org/10.1101/2023.02.25.530044
work_keys_str_mv AT bastosgeorgia afrontosensorycircuitforvisualcontextprocessingissynchronousinthethetaalphaband
AT holmesjacobt afrontosensorycircuitforvisualcontextprocessingissynchronousinthethetaalphaband
AT rossjordanm afrontosensorycircuitforvisualcontextprocessingissynchronousinthethetaalphaband
AT raderannam afrontosensorycircuitforvisualcontextprocessingissynchronousinthethetaalphaband
AT gallimoreconnorg afrontosensorycircuitforvisualcontextprocessingissynchronousinthethetaalphaband
AT peterkadarcys afrontosensorycircuitforvisualcontextprocessingissynchronousinthethetaalphaband
AT hammjordanp afrontosensorycircuitforvisualcontextprocessingissynchronousinthethetaalphaband
AT bastosgeorgia frontosensorycircuitforvisualcontextprocessingissynchronousinthethetaalphaband
AT holmesjacobt frontosensorycircuitforvisualcontextprocessingissynchronousinthethetaalphaband
AT rossjordanm frontosensorycircuitforvisualcontextprocessingissynchronousinthethetaalphaband
AT raderannam frontosensorycircuitforvisualcontextprocessingissynchronousinthethetaalphaband
AT gallimoreconnorg frontosensorycircuitforvisualcontextprocessingissynchronousinthethetaalphaband
AT peterkadarcys frontosensorycircuitforvisualcontextprocessingissynchronousinthethetaalphaband
AT hammjordanp frontosensorycircuitforvisualcontextprocessingissynchronousinthethetaalphaband