Cargando…
Structural and biochemical insights into PsEst3, a new GHSR-type esterase obtained from Paenibacillus sp. R4
PsEst3, a psychrophilic esterase obtained from Paenibacillus sp. R4, which was isolated from the permafrost of Alaska, exhibits relatively high activity at low temperatures. Here, crystal structures of PsEst3 complexed with various ligands were generated and studied at atomic resolution, and biochem...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9980389/ https://www.ncbi.nlm.nih.gov/pubmed/36862488 http://dx.doi.org/10.1107/S2052252523001562 |
_version_ | 1784899905837334528 |
---|---|
author | Son, Jonghyeon Choi, Woong Kim, Hyun Kim, Minseo Lee, Jun Hyuck Shin, Seung Chul Kim, Han-Woo |
author_facet | Son, Jonghyeon Choi, Woong Kim, Hyun Kim, Minseo Lee, Jun Hyuck Shin, Seung Chul Kim, Han-Woo |
author_sort | Son, Jonghyeon |
collection | PubMed |
description | PsEst3, a psychrophilic esterase obtained from Paenibacillus sp. R4, which was isolated from the permafrost of Alaska, exhibits relatively high activity at low temperatures. Here, crystal structures of PsEst3 complexed with various ligands were generated and studied at atomic resolution, and biochemical studies were performed to analyze the structure–function relationship of PsEst3. Certain unique characteristics of PsEst3 distinct from those of other classes of lipases/esterases were identified. Firstly, PsEst3 contains a conserved GHSRA/G pentapeptide sequence in the GxSxG motif around the nucleophilic serine. Additionally, it contains a conserved HGFR/K consensus sequence in the oxyanion hole, which is distinct from that in other lipase/esterase families, as well as a specific domain composition (for example a helix–turn–helix motif) and a degenerative lid domain that exposes the active site to the solvent. Secondly, the electrostatic potential of the active site in PsEst3 is positive, which may cause unintended binding of negatively charged chemicals in the active site. Thirdly, the last residue of the oxyanion hole-forming sequence, Arg44, separates the active site from the solvent by sealing the acyl-binding pocket, suggesting that PsEst3 is an enzyme that is customized to sense an unidentified substrate that is distinct from those of classical lipases/esterases. Collectively, this evidence strongly suggests that PsEst3 belongs to a distinct family of esterases. |
format | Online Article Text |
id | pubmed-9980389 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | International Union of Crystallography |
record_format | MEDLINE/PubMed |
spelling | pubmed-99803892023-03-03 Structural and biochemical insights into PsEst3, a new GHSR-type esterase obtained from Paenibacillus sp. R4 Son, Jonghyeon Choi, Woong Kim, Hyun Kim, Minseo Lee, Jun Hyuck Shin, Seung Chul Kim, Han-Woo IUCrJ Research Papers PsEst3, a psychrophilic esterase obtained from Paenibacillus sp. R4, which was isolated from the permafrost of Alaska, exhibits relatively high activity at low temperatures. Here, crystal structures of PsEst3 complexed with various ligands were generated and studied at atomic resolution, and biochemical studies were performed to analyze the structure–function relationship of PsEst3. Certain unique characteristics of PsEst3 distinct from those of other classes of lipases/esterases were identified. Firstly, PsEst3 contains a conserved GHSRA/G pentapeptide sequence in the GxSxG motif around the nucleophilic serine. Additionally, it contains a conserved HGFR/K consensus sequence in the oxyanion hole, which is distinct from that in other lipase/esterase families, as well as a specific domain composition (for example a helix–turn–helix motif) and a degenerative lid domain that exposes the active site to the solvent. Secondly, the electrostatic potential of the active site in PsEst3 is positive, which may cause unintended binding of negatively charged chemicals in the active site. Thirdly, the last residue of the oxyanion hole-forming sequence, Arg44, separates the active site from the solvent by sealing the acyl-binding pocket, suggesting that PsEst3 is an enzyme that is customized to sense an unidentified substrate that is distinct from those of classical lipases/esterases. Collectively, this evidence strongly suggests that PsEst3 belongs to a distinct family of esterases. International Union of Crystallography 2023-02-28 /pmc/articles/PMC9980389/ /pubmed/36862488 http://dx.doi.org/10.1107/S2052252523001562 Text en © Jonghyeon Son et al. 2023 https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited. |
spellingShingle | Research Papers Son, Jonghyeon Choi, Woong Kim, Hyun Kim, Minseo Lee, Jun Hyuck Shin, Seung Chul Kim, Han-Woo Structural and biochemical insights into PsEst3, a new GHSR-type esterase obtained from Paenibacillus sp. R4 |
title | Structural and biochemical insights into PsEst3, a new GHSR-type esterase obtained from Paenibacillus sp. R4 |
title_full | Structural and biochemical insights into PsEst3, a new GHSR-type esterase obtained from Paenibacillus sp. R4 |
title_fullStr | Structural and biochemical insights into PsEst3, a new GHSR-type esterase obtained from Paenibacillus sp. R4 |
title_full_unstemmed | Structural and biochemical insights into PsEst3, a new GHSR-type esterase obtained from Paenibacillus sp. R4 |
title_short | Structural and biochemical insights into PsEst3, a new GHSR-type esterase obtained from Paenibacillus sp. R4 |
title_sort | structural and biochemical insights into psest3, a new ghsr-type esterase obtained from paenibacillus sp. r4 |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9980389/ https://www.ncbi.nlm.nih.gov/pubmed/36862488 http://dx.doi.org/10.1107/S2052252523001562 |
work_keys_str_mv | AT sonjonghyeon structuralandbiochemicalinsightsintopsest3anewghsrtypeesteraseobtainedfrompaenibacillusspr4 AT choiwoong structuralandbiochemicalinsightsintopsest3anewghsrtypeesteraseobtainedfrompaenibacillusspr4 AT kimhyun structuralandbiochemicalinsightsintopsest3anewghsrtypeesteraseobtainedfrompaenibacillusspr4 AT kimminseo structuralandbiochemicalinsightsintopsest3anewghsrtypeesteraseobtainedfrompaenibacillusspr4 AT leejunhyuck structuralandbiochemicalinsightsintopsest3anewghsrtypeesteraseobtainedfrompaenibacillusspr4 AT shinseungchul structuralandbiochemicalinsightsintopsest3anewghsrtypeesteraseobtainedfrompaenibacillusspr4 AT kimhanwoo structuralandbiochemicalinsightsintopsest3anewghsrtypeesteraseobtainedfrompaenibacillusspr4 |