Cargando…
New technologies promoting active upper limb rehabilitation after stroke: an overview and network meta-analysis
INTRODUCTION: The primary aim of this work was to summarize and compare the effects of active rehabilitation assisted by new technologies (virtual reality [VR], robot-assisted therapy [RAT] and telerehabilitation [TR)) on upper limb motor function and everyday living activity during the subacute and...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Edizioni Minerva Medica
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9980549/ https://www.ncbi.nlm.nih.gov/pubmed/35666491 http://dx.doi.org/10.23736/S1973-9087.22.07404-4 |
_version_ | 1784899926829826048 |
---|---|
author | EVERARD, Gauthier DECLERCK, Louise DETREMBLEUR, Christine LEONARD, Sophie BOWER, Glenn DEHEM, Stéphanie LEJEUNE, Thierry |
author_facet | EVERARD, Gauthier DECLERCK, Louise DETREMBLEUR, Christine LEONARD, Sophie BOWER, Glenn DEHEM, Stéphanie LEJEUNE, Thierry |
author_sort | EVERARD, Gauthier |
collection | PubMed |
description | INTRODUCTION: The primary aim of this work was to summarize and compare the effects of active rehabilitation assisted by new technologies (virtual reality [VR], robot-assisted therapy [RAT] and telerehabilitation [TR)) on upper limb motor function and everyday living activity during the subacute and chronic phases of stroke. The secondary aims were to compare the effects of these technologies according to the intervention design (in addition to or in substitution of conventional therapy), the duration of active rehabilitation and the severity of patients’ motor impairments. EVIDENCE ACQUISITION: Several databases, namely PubMed, Scopus, Embase and Cochrane Library, were searched. Studies were included if they were meta-analyses with a moderate to high level of confidence (assessed with AMSTAR-2) that compared the effects of a new technology promoting active rehabilitation to that of a conventional therapy program among patients with stroke. Network meta-analyses were conducted to compare the effects of the new technologies. EVIDENCE SYNTHESIS: Eighteen different meta-analyses were selected and fifteen included in the quantitative analysis. In total these 15 meta-analyses were based on 189 different randomized controlled trials. VR (SMD≥0.25; P<0.05), RAT (SMD≥0.29; P≤0.29) and TR (SMD≥-0.08; P≤0.64) were found to be at least as effective as conventional therapy. During the subacute phase, RAT’s greatest effect was observed for patients with severe-moderate impairments whereas VR and TR’s greatest effects were observed for patients with mild impairments. During the chronic phase, the highest effects were observed for patients with mild impairments, for all studies technologies. Network meta-analyses showed that VR and RAT were both significantly superior to TR in improving motor function during the chronic phase but revealed no significant difference between VR, RAT and TR effectiveness on both motor function (during the subacute phase) and activity (during both chronic and subacute phase). CONCLUSIONS: This overview provides low-to-moderate evidence that rehabilitation assisted with technologies are at least as effective as conventional therapy for patients with stroke. While VR and RAT seem to be more efficient during the subacute phase, all technologies seem to be as efficient as one another in the chronic phase. |
format | Online Article Text |
id | pubmed-9980549 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Edizioni Minerva Medica |
record_format | MEDLINE/PubMed |
spelling | pubmed-99805492023-03-07 New technologies promoting active upper limb rehabilitation after stroke: an overview and network meta-analysis EVERARD, Gauthier DECLERCK, Louise DETREMBLEUR, Christine LEONARD, Sophie BOWER, Glenn DEHEM, Stéphanie LEJEUNE, Thierry Eur J Phys Rehabil Med Article INTRODUCTION: The primary aim of this work was to summarize and compare the effects of active rehabilitation assisted by new technologies (virtual reality [VR], robot-assisted therapy [RAT] and telerehabilitation [TR)) on upper limb motor function and everyday living activity during the subacute and chronic phases of stroke. The secondary aims were to compare the effects of these technologies according to the intervention design (in addition to or in substitution of conventional therapy), the duration of active rehabilitation and the severity of patients’ motor impairments. EVIDENCE ACQUISITION: Several databases, namely PubMed, Scopus, Embase and Cochrane Library, were searched. Studies were included if they were meta-analyses with a moderate to high level of confidence (assessed with AMSTAR-2) that compared the effects of a new technology promoting active rehabilitation to that of a conventional therapy program among patients with stroke. Network meta-analyses were conducted to compare the effects of the new technologies. EVIDENCE SYNTHESIS: Eighteen different meta-analyses were selected and fifteen included in the quantitative analysis. In total these 15 meta-analyses were based on 189 different randomized controlled trials. VR (SMD≥0.25; P<0.05), RAT (SMD≥0.29; P≤0.29) and TR (SMD≥-0.08; P≤0.64) were found to be at least as effective as conventional therapy. During the subacute phase, RAT’s greatest effect was observed for patients with severe-moderate impairments whereas VR and TR’s greatest effects were observed for patients with mild impairments. During the chronic phase, the highest effects were observed for patients with mild impairments, for all studies technologies. Network meta-analyses showed that VR and RAT were both significantly superior to TR in improving motor function during the chronic phase but revealed no significant difference between VR, RAT and TR effectiveness on both motor function (during the subacute phase) and activity (during both chronic and subacute phase). CONCLUSIONS: This overview provides low-to-moderate evidence that rehabilitation assisted with technologies are at least as effective as conventional therapy for patients with stroke. While VR and RAT seem to be more efficient during the subacute phase, all technologies seem to be as efficient as one another in the chronic phase. Edizioni Minerva Medica 2022-06-06 /pmc/articles/PMC9980549/ /pubmed/35666491 http://dx.doi.org/10.23736/S1973-9087.22.07404-4 Text en 2022 THE AUTHORS https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (CC BY-NC-ND) 4.0 License. |
spellingShingle | Article EVERARD, Gauthier DECLERCK, Louise DETREMBLEUR, Christine LEONARD, Sophie BOWER, Glenn DEHEM, Stéphanie LEJEUNE, Thierry New technologies promoting active upper limb rehabilitation after stroke: an overview and network meta-analysis |
title | New technologies promoting active upper limb rehabilitation after stroke: an overview and network meta-analysis |
title_full | New technologies promoting active upper limb rehabilitation after stroke: an overview and network meta-analysis |
title_fullStr | New technologies promoting active upper limb rehabilitation after stroke: an overview and network meta-analysis |
title_full_unstemmed | New technologies promoting active upper limb rehabilitation after stroke: an overview and network meta-analysis |
title_short | New technologies promoting active upper limb rehabilitation after stroke: an overview and network meta-analysis |
title_sort | new technologies promoting active upper limb rehabilitation after stroke: an overview and network meta-analysis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9980549/ https://www.ncbi.nlm.nih.gov/pubmed/35666491 http://dx.doi.org/10.23736/S1973-9087.22.07404-4 |
work_keys_str_mv | AT everardgauthier newtechnologiespromotingactiveupperlimbrehabilitationafterstrokeanoverviewandnetworkmetaanalysis AT declercklouise newtechnologiespromotingactiveupperlimbrehabilitationafterstrokeanoverviewandnetworkmetaanalysis AT detrembleurchristine newtechnologiespromotingactiveupperlimbrehabilitationafterstrokeanoverviewandnetworkmetaanalysis AT leonardsophie newtechnologiespromotingactiveupperlimbrehabilitationafterstrokeanoverviewandnetworkmetaanalysis AT bowerglenn newtechnologiespromotingactiveupperlimbrehabilitationafterstrokeanoverviewandnetworkmetaanalysis AT dehemstephanie newtechnologiespromotingactiveupperlimbrehabilitationafterstrokeanoverviewandnetworkmetaanalysis AT lejeunethierry newtechnologiespromotingactiveupperlimbrehabilitationafterstrokeanoverviewandnetworkmetaanalysis |