Cargando…
Evidence synthesis and pooled analysis of vaccine effectiveness for COVID-19 mRNA vaccine BNT162b2 as a heterologous booster after inactivated SARS-CoV-2 virus vaccines
Introduction of primary COVID-19 vaccination has helped reduce severe disease and death caused by SARS-CoV-2 infection. Understanding the protection conferred by heterologous booster regimens informs alternative vaccination strategies that enable programmatic resilience and can catalyze vaccine conf...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9980688/ https://www.ncbi.nlm.nih.gov/pubmed/36727201 http://dx.doi.org/10.1080/21645515.2023.2165856 |
Sumario: | Introduction of primary COVID-19 vaccination has helped reduce severe disease and death caused by SARS-CoV-2 infection. Understanding the protection conferred by heterologous booster regimens informs alternative vaccination strategies that enable programmatic resilience and can catalyze vaccine confidence and coverage. Inactivated SARS-CoV-2 vaccines are among the most widely used vaccines worldwide. This review synthesizes the available evidence identified as of May 26, 2022, on the safety, immunogenicity, and effectiveness of a heterologous BNT162b2 (Pfizer-BioNTech) mRNA vaccine booster dose after an inactivated SARS-CoV-2 vaccine primary series, to help protect against COVID-19. Evidence showed that the heterologous BNT16b2 mRNA vaccine booster enhances immunogenicity and improves vaccine effectiveness against COVID-19, and no new safety concerns were identified with heterologous inactivated primary series with mRNA booster combinations. |
---|