Cargando…
YOLOv5-LiNet: A lightweight network for fruits instance segmentation
To meet the goals of computer vision-based understanding of images adopted in agriculture for improved fruit production, it is expected of a recognition model to be robust against complex and changeable environment, fast, accurate and lightweight for a low power computing platform deployment. For th...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9980778/ https://www.ncbi.nlm.nih.gov/pubmed/36862724 http://dx.doi.org/10.1371/journal.pone.0282297 |
Sumario: | To meet the goals of computer vision-based understanding of images adopted in agriculture for improved fruit production, it is expected of a recognition model to be robust against complex and changeable environment, fast, accurate and lightweight for a low power computing platform deployment. For this reason, a lightweight YOLOv5-LiNet model for fruit instance segmentation to strengthen fruit detection was proposed based on the modified YOLOv5n. The model included Stem, Shuffle_Block, ResNet and SPPF as backbone network, PANet as neck network, and EIoU loss function to enhance detection performance. YOLOv5-LiNet was compared to YOLOv5n, YOLOv5-GhostNet, YOLOv5-MobileNetv3, YOLOv5-LiNetBiFPN, YOLOv5-LiNetC, YOLOv5-LiNet, YOLOv5-LiNetFPN, YOLOv5-Efficientlite, YOLOv4-tiny and YOLOv5-ShuffleNetv2 lightweight model including Mask-RCNN. The obtained results show that YOLOv5-LiNet having the box accuracy of 0.893, instance segmentation accuracy of 0.885, weight size of 3.0 MB and real-time detection of 2.6 ms combined together outperformed other lightweight models. Therefore, the YOLOv5-LiNet model is robust, accurate, fast, applicable to low power computing devices and extendable to other agricultural products for instance segmentation. |
---|