Cargando…
YOLOv5-LiNet: A lightweight network for fruits instance segmentation
To meet the goals of computer vision-based understanding of images adopted in agriculture for improved fruit production, it is expected of a recognition model to be robust against complex and changeable environment, fast, accurate and lightweight for a low power computing platform deployment. For th...
Autor principal: | Lawal, Olarewaju Mubashiru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9980778/ https://www.ncbi.nlm.nih.gov/pubmed/36862724 http://dx.doi.org/10.1371/journal.pone.0282297 |
Ejemplares similares
-
Tomato detection based on modified YOLOv3 framework
por: Lawal, Mubashiru Olarewaju
Publicado: (2021) -
An improved YOLOv5s model using feature concatenation with attention mechanism for real-time fruit detection and counting
por: Lawal, Olarewaju Mubashiru, et al.
Publicado: (2023) -
A simplified network topology for fruit detection, counting and mobile-phone deployment
por: Lawal, Olarewaju Mubashiru, et al.
Publicado: (2023) -
Lightweight SM-YOLOv5 Tomato Fruit Detection Algorithm for Plant Factory
por: Wang, Xinfa, et al.
Publicado: (2023) -
Polar-Net: Green fruit instance segmentation in complex orchard environment
por: Jia, Weikuan, et al.
Publicado: (2022)