Cargando…
Robust framework for COVID-19 identication from a multicenter dataset of chest CT scans
The main objective of this study is to develop a robust deep learning-based framework to distinguish COVID-19, Community-Acquired Pneumonia (CAP), and Normal cases based on volumetric chest CT scans, which are acquired in different imaging centers using different scanners and technical settings. We...
Autores principales: | Khademi, Sadaf, Heidarian, Shahin, Afshar, Parnian, Enshaei, Nastaran, Naderkhani, Farnoosh, Rafiee, Moezedin Javad, Oikonomou, Anastasia, Shafiee, Akbar, Babaki Fard, Faranak, plataniotis, Konstantinos N., Mohammadi, Arash |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9980818/ https://www.ncbi.nlm.nih.gov/pubmed/36862633 http://dx.doi.org/10.1371/journal.pone.0282121 |
Ejemplares similares
-
COVID-CT-MD, COVID-19 computed tomography scan dataset applicable in machine learning and deep learning
por: Afshar, Parnian, et al.
Publicado: (2021) -
COVID-FACT: A Fully-Automated Capsule Network-Based Framework for Identification of COVID-19 Cases from Chest CT Scans
por: Heidarian, Shahin, et al.
Publicado: (2021) -
Human-level COVID-19 diagnosis from low-dose CT scans using a two-stage time-distributed capsule network
por: Afshar, Parnian, et al.
Publicado: (2022) -
COVID-rate: an automated framework for segmentation of COVID-19 lesions from chest CT images
por: Enshaei, Nastaran, et al.
Publicado: (2022) -
COVID-CAPS: A capsule network-based framework for identification of COVID-19 cases from X-ray images
por: Afshar, Parnian, et al.
Publicado: (2020)