Cargando…

Madder (Rubia cordifolia L.) Alleviates Myocardial Ischemia-Reperfusion Injury by Protecting Endothelial Cells from Apoptosis and Inflammation

OBJECTIVE: Ischemia-reperfusion injury often occurs in organ transplantation, coronary heart disease, ischemic heart disease, and other diseases, which greatly reduces clinical efficacy. This study examined the effectiveness of madder as a medicine to treat ischemia-reperfusion injury. METHODS: The...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Jinwei, Wang, Zheng, Ye, Zhangzhang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9981279/
https://www.ncbi.nlm.nih.gov/pubmed/36875688
http://dx.doi.org/10.1155/2023/5015039
Descripción
Sumario:OBJECTIVE: Ischemia-reperfusion injury often occurs in organ transplantation, coronary heart disease, ischemic heart disease, and other diseases, which greatly reduces clinical efficacy. This study examined the effectiveness of madder as a medicine to treat ischemia-reperfusion injury. METHODS: The efficacy of madder was evaluated by measuring myocardial infarction size, coronary outflow volume, myocardial contraction rate, activation of inflammatory factors, autophagy factors, apoptosis factors, and related pathway genes in mice. RESULTS: The results indicated that treatment with madder can effectively reduce the area of myocardial infarction and restore arterial blood flow velocity and myocardial contractility in mice. Additionally, madder treatment inhibited the expression of inflammatory factors, autophagy factors, and apoptosis factors in mice and reduced the degree of myocardial cell injury. Studies have also shown that madder treatment can alleviate myocardial ischemia-reperfusion injury in mice and inhibit the occurrence of inflammatory response by inhibiting the activity of the NF-κB pathway. CONCLUSION: The results showed that madder was effective against ischemia-reperfusion injury, thus showing potential as a clinical drug for treating ischemia-reperfusion injury.