Cargando…

Neonatal Disease Prediction Using Machine Learning Techniques

Neonatal diseases are among the main causes of morbidity and a significant contributor to underfive mortality in the world. There is an increase in understanding of the pathophysiology of the diseases and the implementation of different strategies to minimize their burden. However, improvements in o...

Descripción completa

Detalles Bibliográficos
Autores principales: Robi, Yohanes Gutema, Sitote, Tilahun Melak
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9981287/
https://www.ncbi.nlm.nih.gov/pubmed/36875748
http://dx.doi.org/10.1155/2023/3567194
Descripción
Sumario:Neonatal diseases are among the main causes of morbidity and a significant contributor to underfive mortality in the world. There is an increase in understanding of the pathophysiology of the diseases and the implementation of different strategies to minimize their burden. However, improvements in outcomes are not adequate. Limited success is due to different factors, including the similarity of symptoms, which can lead to misdiagnosis, and the inability to detect early for timely intervention. In resource-limited countries like Ethiopia, the challenge is more severe. Low access to diagnosis and treatment due to the inadequacy of neonatal health professionals is one of the shortcomings. Due to the shortage of medical facilities, many neonatal health professionals are forced to decide the type of disease only based on interviews. They may not have a complete picture of all variables that have a contributing effect on neonatal disease from the interview. This can make the diagnosis inconclusive and may lead to a misdiagnosis. Machine learning has great potential for early prediction if relevant historical data is available. We have applied a classification stacking model for the following four main neonatal diseases: sepsis, birth asphyxia, necrotizing enter colitis (NEC), and respiratory distress syndrome. These diseases account for 75% of neonatal deaths. The dataset has been obtained from the Asella Comprehensive Hospital. It has been collected between 2018 and 2021. The developed stacking model was compared to three related machine-learning models XGBoost (XGB), Random Forest (RF), and Support Vector Machine (SVM). The proposed stacking model outperformed the other models, with an accuracy of 97.04%. We believe that this will contribute to the early detection and accurate diagnosis of neonatal diseases, especially for resource-limited health facilities.