Cargando…

Transcriptome profiling of skeletal muscles from Korean patients with Bethlem myopathy

Bethlem myopathy is one of the collagens VI-related muscular dystrophies caused by mutations in the collagen VI genes. The study was designed to analyze the gene expression profiles in the skeletal muscle of patients with Bethlem myopathy. Six skeletal muscle samples from 3 patients with Bethlem myo...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Seung-Ah, Hong, Ji-Man, Lee, Jung Hwan, Choi, Young-Chul, Park, Hyung Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9981387/
https://www.ncbi.nlm.nih.gov/pubmed/36862922
http://dx.doi.org/10.1097/MD.0000000000033122
Descripción
Sumario:Bethlem myopathy is one of the collagens VI-related muscular dystrophies caused by mutations in the collagen VI genes. The study was designed to analyze the gene expression profiles in the skeletal muscle of patients with Bethlem myopathy. Six skeletal muscle samples from 3 patients with Bethlem myopathy and 3 control subjects were analyzed by RNA-sequencing. 187 transcripts were significantly differentially expressed, with 157 upregulated and 30 downregulated transcripts in the Bethlem group. Particularly, 1 (microRNA-133b) was considerably upregulated, and 4 long intergenic non-protein coding RNAs, LINC01854, MBNL1-AS1, LINC02609, and LOC728975, were significantly downregulated. We categorized differentially expressed gene using Gene Ontology and showed that Bethlem myopathy is strongly associated with the organization of extracellular matrix (ECM). Kyoto Encyclopedia of Genes and Genomes pathway enrichment reflected themes with significant enrichment of the ECM-receptor interaction (hsa04512), complement and coagulation cascades (hsa04610), and focal adhesion (hsa04510). We confirmed that Bethlem myopathy is strongly associated with the organization of ECM and the wound healing process. Our results demonstrate transcriptome profiling of Bethlem myopathy, and provide new insights into the path mechanism of Bethlem myopathy associated with non-protein coding RNAs.