Cargando…
Dynamic crystallography reveals spontaneous anisotropy in cubic GeTe
Cubic energy materials such as thermoelectrics or hybrid perovskite materials are often understood to be highly disordered(1,2). In GeTe and related IV–VI compounds, this is thought to provide the low thermal conductivities needed for thermoelectric applications(1). Since conventional crystallograph...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9981458/ https://www.ncbi.nlm.nih.gov/pubmed/36804639 http://dx.doi.org/10.1038/s41563-023-01483-7 |
_version_ | 1784900107657805824 |
---|---|
author | Kimber, Simon A. J. Zhang, Jiayong Liang, Charles H. Guzmán-Verri, Gian G. Littlewood, Peter B. Cheng, Yongqiang Abernathy, Douglas L. Hudspeth, Jessica M. Luo, Zhong-Zhen Kanatzidis, Mercouri G. Chatterji, Tapan Ramirez-Cuesta, Anibal J. Billinge, Simon J. L. |
author_facet | Kimber, Simon A. J. Zhang, Jiayong Liang, Charles H. Guzmán-Verri, Gian G. Littlewood, Peter B. Cheng, Yongqiang Abernathy, Douglas L. Hudspeth, Jessica M. Luo, Zhong-Zhen Kanatzidis, Mercouri G. Chatterji, Tapan Ramirez-Cuesta, Anibal J. Billinge, Simon J. L. |
author_sort | Kimber, Simon A. J. |
collection | PubMed |
description | Cubic energy materials such as thermoelectrics or hybrid perovskite materials are often understood to be highly disordered(1,2). In GeTe and related IV–VI compounds, this is thought to provide the low thermal conductivities needed for thermoelectric applications(1). Since conventional crystallography cannot distinguish between static disorder and atomic motions, we develop the energy-resolved variable-shutter pair distribution function technique. This collects structural snapshots with varying exposure times, on timescales relevant for atomic motions. In disagreement with previous interpretations(3–5), we find the time-averaged structure of GeTe to be crystalline at all temperatures, but with anisotropic anharmonic dynamics at higher temperatures that resemble static disorder at fast shutter speeds, with correlated ferroelectric fluctuations along the <100>(c) direction. We show that this anisotropy naturally emerges from a Ginzburg–Landau model that couples polarization fluctuations through long-range elastic interactions(6). By accessing time-dependent atomic correlations in energy materials, we resolve the long-standing disagreement between local and average structure probes(1,7–9) and show that spontaneous anisotropy is ubiquitous in cubic IV–VI materials. |
format | Online Article Text |
id | pubmed-9981458 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-99814582023-03-04 Dynamic crystallography reveals spontaneous anisotropy in cubic GeTe Kimber, Simon A. J. Zhang, Jiayong Liang, Charles H. Guzmán-Verri, Gian G. Littlewood, Peter B. Cheng, Yongqiang Abernathy, Douglas L. Hudspeth, Jessica M. Luo, Zhong-Zhen Kanatzidis, Mercouri G. Chatterji, Tapan Ramirez-Cuesta, Anibal J. Billinge, Simon J. L. Nat Mater Letter Cubic energy materials such as thermoelectrics or hybrid perovskite materials are often understood to be highly disordered(1,2). In GeTe and related IV–VI compounds, this is thought to provide the low thermal conductivities needed for thermoelectric applications(1). Since conventional crystallography cannot distinguish between static disorder and atomic motions, we develop the energy-resolved variable-shutter pair distribution function technique. This collects structural snapshots with varying exposure times, on timescales relevant for atomic motions. In disagreement with previous interpretations(3–5), we find the time-averaged structure of GeTe to be crystalline at all temperatures, but with anisotropic anharmonic dynamics at higher temperatures that resemble static disorder at fast shutter speeds, with correlated ferroelectric fluctuations along the <100>(c) direction. We show that this anisotropy naturally emerges from a Ginzburg–Landau model that couples polarization fluctuations through long-range elastic interactions(6). By accessing time-dependent atomic correlations in energy materials, we resolve the long-standing disagreement between local and average structure probes(1,7–9) and show that spontaneous anisotropy is ubiquitous in cubic IV–VI materials. Nature Publishing Group UK 2023-02-20 2023 /pmc/articles/PMC9981458/ /pubmed/36804639 http://dx.doi.org/10.1038/s41563-023-01483-7 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Letter Kimber, Simon A. J. Zhang, Jiayong Liang, Charles H. Guzmán-Verri, Gian G. Littlewood, Peter B. Cheng, Yongqiang Abernathy, Douglas L. Hudspeth, Jessica M. Luo, Zhong-Zhen Kanatzidis, Mercouri G. Chatterji, Tapan Ramirez-Cuesta, Anibal J. Billinge, Simon J. L. Dynamic crystallography reveals spontaneous anisotropy in cubic GeTe |
title | Dynamic crystallography reveals spontaneous anisotropy in cubic GeTe |
title_full | Dynamic crystallography reveals spontaneous anisotropy in cubic GeTe |
title_fullStr | Dynamic crystallography reveals spontaneous anisotropy in cubic GeTe |
title_full_unstemmed | Dynamic crystallography reveals spontaneous anisotropy in cubic GeTe |
title_short | Dynamic crystallography reveals spontaneous anisotropy in cubic GeTe |
title_sort | dynamic crystallography reveals spontaneous anisotropy in cubic gete |
topic | Letter |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9981458/ https://www.ncbi.nlm.nih.gov/pubmed/36804639 http://dx.doi.org/10.1038/s41563-023-01483-7 |
work_keys_str_mv | AT kimbersimonaj dynamiccrystallographyrevealsspontaneousanisotropyincubicgete AT zhangjiayong dynamiccrystallographyrevealsspontaneousanisotropyincubicgete AT liangcharlesh dynamiccrystallographyrevealsspontaneousanisotropyincubicgete AT guzmanverrigiang dynamiccrystallographyrevealsspontaneousanisotropyincubicgete AT littlewoodpeterb dynamiccrystallographyrevealsspontaneousanisotropyincubicgete AT chengyongqiang dynamiccrystallographyrevealsspontaneousanisotropyincubicgete AT abernathydouglasl dynamiccrystallographyrevealsspontaneousanisotropyincubicgete AT hudspethjessicam dynamiccrystallographyrevealsspontaneousanisotropyincubicgete AT luozhongzhen dynamiccrystallographyrevealsspontaneousanisotropyincubicgete AT kanatzidismercourig dynamiccrystallographyrevealsspontaneousanisotropyincubicgete AT chatterjitapan dynamiccrystallographyrevealsspontaneousanisotropyincubicgete AT ramirezcuestaanibalj dynamiccrystallographyrevealsspontaneousanisotropyincubicgete AT billingesimonjl dynamiccrystallographyrevealsspontaneousanisotropyincubicgete |