Cargando…
New insights from nanotechnology in SARS-CoV-2 detection, treatment strategy, and prevention
The recent outbreak of SARS-CoV-2 resulted into the deadly COVID-19 pandemic, which has made a profound impact on mankind and the world health care system. SARS-CoV-2 is mainly transmitted within the population via symptomatic carriers, enters the host cell via ACE2 and TMPSSR2 receptors and damages...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9981536/ https://www.ncbi.nlm.nih.gov/pubmed/36950312 http://dx.doi.org/10.1016/j.mtchem.2023.101478 |
Sumario: | The recent outbreak of SARS-CoV-2 resulted into the deadly COVID-19 pandemic, which has made a profound impact on mankind and the world health care system. SARS-CoV-2 is mainly transmitted within the population via symptomatic carriers, enters the host cell via ACE2 and TMPSSR2 receptors and damages the organs. The standard diagnostic tests and treatment methods implemented lack required efficiency to beat SARS-CoV-2 in the race of its spreading. The most prominently used diagnostic test,reverse transcription-polymerase chain reaction (a nucleic acid-based method), has limitations including a prolonged time taken to reveal results, limited sensitivity, a high rate of false negative results, and lacking specificity due to a homology with other viruses. Furthermore, as part of the treatment, antiviral drugs such as remdesivir, favipiravir, lopinavir/ritonavir, chloroquine, daclatasvir, atazanavir, and many more have been tested clinically to check their potency for the treatment of SARS-CoV-2 but none of these antiviral drugs are the definitive cure or suitable prophylaxis. Thus, it is always required to combat SARS-CoV-2 spread and infection for a better and precise prognosis. This review answers the above mentioned challenges by employing nanomedicine for the development of improved detection, treatment, and prevention strategies for SARS-CoV-2. In this review, nanotechnology-based detection methods such as colorimetric assays, photothermal biosensors, molecularly imprinted nanoparticles sensors, electrochemical nanoimmunosensors, aptamer-based biosensors have been discussed. Furthermore, nanotechnology-based treatment strategies involving polymeric nanoparticles, metallic nanoparticles, lipid nanoparticles, and nanocarrier-based antiviral siRNA delivery have been depicted. Moreover, SARS-CoV-2 prevention strategies, which include the nanotechnology for upgrading personal protective equipment, facemasks, ocular protection gears, and nanopolymer-based disinfectants, have been also reviewed. This review will provide a one-site informative platform for researchers to explore the crucial role of nanomedicine in managing the COVID-19 curse more effectively. |
---|