Cargando…

USP35 promotes cell proliferation and chemotherapeutic resistance through stabilizing FUCA1 in colorectal cancer

Ubiquitin-specific-processing proteases 35 (USP35) is an under-characterized deubiquitinase and its role in colorectal cancer (CRC) remains unclear. Here, we focus on delineating the impact of USP35 on CRC cell proliferation and chemo-resistance, as well as the possible regulatory mechanism. By exam...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiao, Yi, Jiang, Xiaoyu, Yin, Ke, Miao, Tianshu, Lu, Hanlin, Wang, Wenqing, Ma, Lijuan, Zhao, Yinghui, Liu, Chunyan, Qiao, Yun, Zhang, Pengju
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9981583/
https://www.ncbi.nlm.nih.gov/pubmed/36864055
http://dx.doi.org/10.1038/s41389-023-00458-2
Descripción
Sumario:Ubiquitin-specific-processing proteases 35 (USP35) is an under-characterized deubiquitinase and its role in colorectal cancer (CRC) remains unclear. Here, we focus on delineating the impact of USP35 on CRC cell proliferation and chemo-resistance, as well as the possible regulatory mechanism. By examining the genomic database and clinical samples, we found that USP35 was overexpressed in CRC. Further functional studies showed that enhanced USP35 expression promoted CRC cell proliferation and resistance to oxaliplatin (OXA) and 5-fluorouracil (5-FU), whereas USP35 depletion impeded cell proliferation and sensitized cells to OXA and 5-FU treatments. Then, to explore the possible mechanism underlying USP35-triggered cellular responses, we performed co-immunoprecipitation (co-IP) followed by mass spectrometry (MS) analysis and identified α-L-fucosidase 1 (FUCA1) as a direct deubiquitiation target of USP35. Importantly, we demonstrated that FUCA1 was an essential mediator for USP35-induced cell proliferation and chemo-resistance in vitro and in vivo. Finally, we observed that nucleotide excision repair (NER) components (e.g., XPC, XPA, ERCC1) were up-regulated by USP35-FUCA1 axis, indicating a potential mechanism for USP35-FUCA1-mediated platinum resistance in CRC. Together, our results for the first time explored the role and important mechanism of USP35 in CRC cell proliferation and chemotherapeutic response, providing a rationale for USP35-FUCA1-targeted therapy in CRC.