Cargando…
Disentangling the mixed effects of soil management on microbial diversity and soil functions: A case study in vineyards
Promoting soil functioning by maintaining soil microbial diversity and activity is central for sustainable agriculture. In viticulture, soil management often includes tillage, which poses a multifaceted disturbance to the soil environment and has direct and indirect effects on soil microbial diversi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9981623/ https://www.ncbi.nlm.nih.gov/pubmed/36864059 http://dx.doi.org/10.1038/s41598-023-30338-z |
Sumario: | Promoting soil functioning by maintaining soil microbial diversity and activity is central for sustainable agriculture. In viticulture, soil management often includes tillage, which poses a multifaceted disturbance to the soil environment and has direct and indirect effects on soil microbial diversity and soil functioning. However, the challenge of disentangling the effects of different soil management practices on soil microbial diversity and functioning has rarely been addressed. In this study, we investigated the effects of soil management on soil bacterial and fungal diversity as well as soil functions (soil respiration and decomposition) using a balanced experimental design with four soil management types in nine vineyards in Germany. Application of structural equation modelling enabled us to investigate the causal relationships of soil disturbance, vegetation cover, and plant richness on soil properties, microbial diversity, and soil functions. We could show that soil disturbance by tillage increased bacterial diversity but decreased fungal diversity. We identified a positive effect of plant diversity on bacterial diversity. Soil respiration showed a positive response to soil disturbance, while decomposition was negatively affected in highly disturbed soils via mediated effects of vegetation removal. Our results contribute to the understanding of direct and indirect effects of vineyard soil management on soil life and aids designing targeted recommendations for agricultural soil management. |
---|