Cargando…
Reinforcement learning as an innovative model-based approach: Examples from precision dosing, digital health and computational psychiatry
Model-based approaches are instrumental for successful drug development and use. Anchored within pharmacological principles, through mathematical modeling they contribute to the quantification of drug response variability and enables precision dosing. Reinforcement learning (RL)—a set of computation...
Autor principal: | Ribba, Benjamin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9981647/ https://www.ncbi.nlm.nih.gov/pubmed/36873047 http://dx.doi.org/10.3389/fphar.2022.1094281 |
Ejemplares similares
-
Model enhanced reinforcement learning to enable precision dosing: A theoretical case study with dosing of propofol
por: Ribba, Benjamin, et al.
Publicado: (2022) -
Individualized Dosing With High Inter-Occasion Variability Is Correctly Handled With Model-Informed Precision Dosing—Using Rifampicin as an Example
por: Keutzer, Lina, et al.
Publicado: (2020) -
Personalized or Precision Medicine? The Example of Cystic Fibrosis
por: Marson, Fernando A. L., et al.
Publicado: (2017) -
Circulating tumor DNA: Opportunities and challenges for pharmacometric approaches
por: Ribba, Benjamin, et al.
Publicado: (2023) -
Computational Phenotyping in Psychiatry: A Worked Example
por: Schwartenbeck, Philipp, et al.
Publicado: (2016)