Cargando…
Machine learning methods to predict outcomes of pharmacological treatment in psychosis
In recent years, machine learning (ML) has been a promising approach in the research of treatment outcome prediction in psychosis. In this study, we reviewed ML studies using different neuroimaging, neurophysiological, genetic, and clinical features to predict antipsychotic treatment outcomes in pat...
Autores principales: | Del Fabro, Lorenzo, Bondi, Elena, Serio, Francesca, Maggioni, Eleonora, D’Agostino, Armando, Brambilla, Paolo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9981732/ https://www.ncbi.nlm.nih.gov/pubmed/36864017 http://dx.doi.org/10.1038/s41398-023-02371-z |
Ejemplares similares
-
T156. FUNCTIONAL CONNECTIVITY AND RISK OF PSYCHOSIS: AN ACTIVATION LIKELIHOOD ESTIMATION (ALE) META-ANALYSIS OF FUNCTIONAL MAGNETIC RESONANCE IMAGING STUDIES
por: Del Fabro, Lorenzo, et al.
Publicado: (2020) -
The Impact of Lithium on Brain Function in Bipolar Disorder: An Updated Review of Functional Magnetic Resonance Imaging Studies
por: Bergamelli, Emilio, et al.
Publicado: (2021) -
Correction to: The Impact of Lithium on Brain Function in Bipolar Disorder: An Updated Review of Functional Magnetic Resonance Imaging Studies
por: Bergamelli, Emilio, et al.
Publicado: (2022) -
Insight and Dissociation in Lucid Dreaming and Psychosis
por: Voss, Ursula, et al.
Publicado: (2018) -
Clinical-learning versus machine-learning for transdiagnostic prediction of psychosis onset in individuals at-risk
por: Fusar-Poli, Paolo, et al.
Publicado: (2019)