Cargando…
Multi-order graph attention network for water solubility prediction and interpretation
The water solubility of molecules is one of the most important properties in various chemical and medical research fields. Recently, machine learning-based methods for predicting molecular properties, including water solubility, have been extensively studied due to the advantage of effectively reduc...
Autores principales: | Lee, Sangho, Park, Hyunwoo, Choi, Chihyeon, Kim, Wonjoon, Kim, Ki Kang, Han, Young-Kyu, Kang, Joohoon, Kang, Chang-Jong, Son, Youngdoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9981901/ https://www.ncbi.nlm.nih.gov/pubmed/36864064 http://dx.doi.org/10.1038/s41598-022-25701-5 |
Ejemplares similares
-
Artificial intelligence in diagnosing dens evaginatus on periapical radiography with limited data availability
por: Choi, Eunhye, et al.
Publicado: (2023) -
Artificial intelligence in positioning between mandibular third molar and inferior alveolar nerve on panoramic radiography
por: Choi, Eunhye, et al.
Publicado: (2022) -
Attention-Based
Graph Neural Network for Molecular
Solubility Prediction
por: Ahmad, Waqar, et al.
Publicado: (2023) -
AFTGAN: prediction of multi-type PPI based on attention free transformer and graph attention network
por: Kang, Yanlei, et al.
Publicado: (2023) -
Indoor Localization Algorithm Based on a High-Order Graph Neural Network
por: Kang, Xiaofei, et al.
Publicado: (2023)