Cargando…

Strain data augmentation enables machine learning of inorganic crystal geometry optimization

Machine-learning (ML) models offer the potential to rapidly evaluate the vast inorganic crystalline materials space to efficiently find materials with properties that meet the challenges of our time. Current ML models require optimized equilibrium structures to attain accurate predictions of formati...

Descripción completa

Detalles Bibliográficos
Autores principales: Dinic, Filip, Wang, Zhibo, Neporozhnii, Ihor, Salim, Usama Bin, Bajpai, Rochan, Rajiv, Navneeth, Chavda, Vedant, Radhakrishnan, Vishal, Voznyy, Oleksandr
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9982222/
https://www.ncbi.nlm.nih.gov/pubmed/36873906
http://dx.doi.org/10.1016/j.patter.2022.100663
_version_ 1784900286475665408
author Dinic, Filip
Wang, Zhibo
Neporozhnii, Ihor
Salim, Usama Bin
Bajpai, Rochan
Rajiv, Navneeth
Chavda, Vedant
Radhakrishnan, Vishal
Voznyy, Oleksandr
author_facet Dinic, Filip
Wang, Zhibo
Neporozhnii, Ihor
Salim, Usama Bin
Bajpai, Rochan
Rajiv, Navneeth
Chavda, Vedant
Radhakrishnan, Vishal
Voznyy, Oleksandr
author_sort Dinic, Filip
collection PubMed
description Machine-learning (ML) models offer the potential to rapidly evaluate the vast inorganic crystalline materials space to efficiently find materials with properties that meet the challenges of our time. Current ML models require optimized equilibrium structures to attain accurate predictions of formation energies. However, equilibrium structures are generally not known for new materials and must be obtained through computationally expensive optimization, bottlenecking ML-based material screening. A computationally efficient structure optimizer is therefore highly desirable. In this work, we present an ML model capable of predicting the crystal energy response to global strain by using available elasticity data to augment the dataset. The addition of global strains improves our model’s understanding of local strains too, significantly improving the accuracy of energy predictions on distorted structures. This allows us to construct an ML-based geometry optimizer, which we used for improving the predictions of formation energy for structures with perturbed atomic positions.
format Online
Article
Text
id pubmed-9982222
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-99822222023-03-04 Strain data augmentation enables machine learning of inorganic crystal geometry optimization Dinic, Filip Wang, Zhibo Neporozhnii, Ihor Salim, Usama Bin Bajpai, Rochan Rajiv, Navneeth Chavda, Vedant Radhakrishnan, Vishal Voznyy, Oleksandr Patterns (N Y) Article Machine-learning (ML) models offer the potential to rapidly evaluate the vast inorganic crystalline materials space to efficiently find materials with properties that meet the challenges of our time. Current ML models require optimized equilibrium structures to attain accurate predictions of formation energies. However, equilibrium structures are generally not known for new materials and must be obtained through computationally expensive optimization, bottlenecking ML-based material screening. A computationally efficient structure optimizer is therefore highly desirable. In this work, we present an ML model capable of predicting the crystal energy response to global strain by using available elasticity data to augment the dataset. The addition of global strains improves our model’s understanding of local strains too, significantly improving the accuracy of energy predictions on distorted structures. This allows us to construct an ML-based geometry optimizer, which we used for improving the predictions of formation energy for structures with perturbed atomic positions. Elsevier 2023-01-03 /pmc/articles/PMC9982222/ /pubmed/36873906 http://dx.doi.org/10.1016/j.patter.2022.100663 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Dinic, Filip
Wang, Zhibo
Neporozhnii, Ihor
Salim, Usama Bin
Bajpai, Rochan
Rajiv, Navneeth
Chavda, Vedant
Radhakrishnan, Vishal
Voznyy, Oleksandr
Strain data augmentation enables machine learning of inorganic crystal geometry optimization
title Strain data augmentation enables machine learning of inorganic crystal geometry optimization
title_full Strain data augmentation enables machine learning of inorganic crystal geometry optimization
title_fullStr Strain data augmentation enables machine learning of inorganic crystal geometry optimization
title_full_unstemmed Strain data augmentation enables machine learning of inorganic crystal geometry optimization
title_short Strain data augmentation enables machine learning of inorganic crystal geometry optimization
title_sort strain data augmentation enables machine learning of inorganic crystal geometry optimization
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9982222/
https://www.ncbi.nlm.nih.gov/pubmed/36873906
http://dx.doi.org/10.1016/j.patter.2022.100663
work_keys_str_mv AT dinicfilip straindataaugmentationenablesmachinelearningofinorganiccrystalgeometryoptimization
AT wangzhibo straindataaugmentationenablesmachinelearningofinorganiccrystalgeometryoptimization
AT neporozhniiihor straindataaugmentationenablesmachinelearningofinorganiccrystalgeometryoptimization
AT salimusamabin straindataaugmentationenablesmachinelearningofinorganiccrystalgeometryoptimization
AT bajpairochan straindataaugmentationenablesmachinelearningofinorganiccrystalgeometryoptimization
AT rajivnavneeth straindataaugmentationenablesmachinelearningofinorganiccrystalgeometryoptimization
AT chavdavedant straindataaugmentationenablesmachinelearningofinorganiccrystalgeometryoptimization
AT radhakrishnanvishal straindataaugmentationenablesmachinelearningofinorganiccrystalgeometryoptimization
AT voznyyoleksandr straindataaugmentationenablesmachinelearningofinorganiccrystalgeometryoptimization