Cargando…
Strain data augmentation enables machine learning of inorganic crystal geometry optimization
Machine-learning (ML) models offer the potential to rapidly evaluate the vast inorganic crystalline materials space to efficiently find materials with properties that meet the challenges of our time. Current ML models require optimized equilibrium structures to attain accurate predictions of formati...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9982222/ https://www.ncbi.nlm.nih.gov/pubmed/36873906 http://dx.doi.org/10.1016/j.patter.2022.100663 |
_version_ | 1784900286475665408 |
---|---|
author | Dinic, Filip Wang, Zhibo Neporozhnii, Ihor Salim, Usama Bin Bajpai, Rochan Rajiv, Navneeth Chavda, Vedant Radhakrishnan, Vishal Voznyy, Oleksandr |
author_facet | Dinic, Filip Wang, Zhibo Neporozhnii, Ihor Salim, Usama Bin Bajpai, Rochan Rajiv, Navneeth Chavda, Vedant Radhakrishnan, Vishal Voznyy, Oleksandr |
author_sort | Dinic, Filip |
collection | PubMed |
description | Machine-learning (ML) models offer the potential to rapidly evaluate the vast inorganic crystalline materials space to efficiently find materials with properties that meet the challenges of our time. Current ML models require optimized equilibrium structures to attain accurate predictions of formation energies. However, equilibrium structures are generally not known for new materials and must be obtained through computationally expensive optimization, bottlenecking ML-based material screening. A computationally efficient structure optimizer is therefore highly desirable. In this work, we present an ML model capable of predicting the crystal energy response to global strain by using available elasticity data to augment the dataset. The addition of global strains improves our model’s understanding of local strains too, significantly improving the accuracy of energy predictions on distorted structures. This allows us to construct an ML-based geometry optimizer, which we used for improving the predictions of formation energy for structures with perturbed atomic positions. |
format | Online Article Text |
id | pubmed-9982222 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-99822222023-03-04 Strain data augmentation enables machine learning of inorganic crystal geometry optimization Dinic, Filip Wang, Zhibo Neporozhnii, Ihor Salim, Usama Bin Bajpai, Rochan Rajiv, Navneeth Chavda, Vedant Radhakrishnan, Vishal Voznyy, Oleksandr Patterns (N Y) Article Machine-learning (ML) models offer the potential to rapidly evaluate the vast inorganic crystalline materials space to efficiently find materials with properties that meet the challenges of our time. Current ML models require optimized equilibrium structures to attain accurate predictions of formation energies. However, equilibrium structures are generally not known for new materials and must be obtained through computationally expensive optimization, bottlenecking ML-based material screening. A computationally efficient structure optimizer is therefore highly desirable. In this work, we present an ML model capable of predicting the crystal energy response to global strain by using available elasticity data to augment the dataset. The addition of global strains improves our model’s understanding of local strains too, significantly improving the accuracy of energy predictions on distorted structures. This allows us to construct an ML-based geometry optimizer, which we used for improving the predictions of formation energy for structures with perturbed atomic positions. Elsevier 2023-01-03 /pmc/articles/PMC9982222/ /pubmed/36873906 http://dx.doi.org/10.1016/j.patter.2022.100663 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Dinic, Filip Wang, Zhibo Neporozhnii, Ihor Salim, Usama Bin Bajpai, Rochan Rajiv, Navneeth Chavda, Vedant Radhakrishnan, Vishal Voznyy, Oleksandr Strain data augmentation enables machine learning of inorganic crystal geometry optimization |
title | Strain data augmentation enables machine learning of inorganic crystal geometry optimization |
title_full | Strain data augmentation enables machine learning of inorganic crystal geometry optimization |
title_fullStr | Strain data augmentation enables machine learning of inorganic crystal geometry optimization |
title_full_unstemmed | Strain data augmentation enables machine learning of inorganic crystal geometry optimization |
title_short | Strain data augmentation enables machine learning of inorganic crystal geometry optimization |
title_sort | strain data augmentation enables machine learning of inorganic crystal geometry optimization |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9982222/ https://www.ncbi.nlm.nih.gov/pubmed/36873906 http://dx.doi.org/10.1016/j.patter.2022.100663 |
work_keys_str_mv | AT dinicfilip straindataaugmentationenablesmachinelearningofinorganiccrystalgeometryoptimization AT wangzhibo straindataaugmentationenablesmachinelearningofinorganiccrystalgeometryoptimization AT neporozhniiihor straindataaugmentationenablesmachinelearningofinorganiccrystalgeometryoptimization AT salimusamabin straindataaugmentationenablesmachinelearningofinorganiccrystalgeometryoptimization AT bajpairochan straindataaugmentationenablesmachinelearningofinorganiccrystalgeometryoptimization AT rajivnavneeth straindataaugmentationenablesmachinelearningofinorganiccrystalgeometryoptimization AT chavdavedant straindataaugmentationenablesmachinelearningofinorganiccrystalgeometryoptimization AT radhakrishnanvishal straindataaugmentationenablesmachinelearningofinorganiccrystalgeometryoptimization AT voznyyoleksandr straindataaugmentationenablesmachinelearningofinorganiccrystalgeometryoptimization |