Cargando…
Strain data augmentation enables machine learning of inorganic crystal geometry optimization
Machine-learning (ML) models offer the potential to rapidly evaluate the vast inorganic crystalline materials space to efficiently find materials with properties that meet the challenges of our time. Current ML models require optimized equilibrium structures to attain accurate predictions of formati...
Autores principales: | Dinic, Filip, Wang, Zhibo, Neporozhnii, Ihor, Salim, Usama Bin, Bajpai, Rochan, Rajiv, Navneeth, Chavda, Vedant, Radhakrishnan, Vishal, Voznyy, Oleksandr |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9982222/ https://www.ncbi.nlm.nih.gov/pubmed/36873906 http://dx.doi.org/10.1016/j.patter.2022.100663 |
Ejemplares similares
-
Alternative Geometries for Improved Light Output of Inorganic Scintillating Crystals
por: Nemallapudi, Mythra Varun, et al.
Publicado: (2016) -
Enhanced emission directivity from asymmetrically strained colloidal quantum dots
por: Song, Yang, et al.
Publicado: (2022) -
Vesicle Geometries Enabled by Semiflexible Polymer
por: Li, Ping, et al.
Publicado: (2022) -
Percutaneous vertebral augmentation—pearls and pitfalls
por: Espahbodinea, Shervin, et al.
Publicado: (2023) -
Real-Time 6-DOF Pose Estimation of Known Geometries in Point Cloud Data
por: Bhandari, Vedant, et al.
Publicado: (2023)