Cargando…
Continuous diagnosis and prognosis by controlling the update process of deep neural networks
Continuous diagnosis and prognosis are essential for critical patients. They can provide more opportunities for timely treatment and rational allocation. Although deep-learning techniques have demonstrated superiority in many medical tasks, they frequently forget, overfit, and produce results too la...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9982300/ https://www.ncbi.nlm.nih.gov/pubmed/36873902 http://dx.doi.org/10.1016/j.patter.2023.100687 |
Sumario: | Continuous diagnosis and prognosis are essential for critical patients. They can provide more opportunities for timely treatment and rational allocation. Although deep-learning techniques have demonstrated superiority in many medical tasks, they frequently forget, overfit, and produce results too late when performing continuous diagnosis and prognosis. In this work, we summarize the four requirements; propose a concept, continuous classification of time series (CCTS); and design a training method for deep learning, restricted update strategy (RU). The RU outperforms all baselines and achieves average accuracies of 90%, 97%, and 85% on continuous sepsis prognosis, COVID-19 mortality prediction, and eight disease classifications, respectively. The RU can also endow deep learning with interpretability, exploring disease mechanisms through staging and biomarker discovery. We find four sepsis stages, three COVID-19 stages, and their respective biomarkers. Further, our approach is data and model agnostic. It can be applied to other diseases and even in other fields. |
---|