Cargando…
Continuous diagnosis and prognosis by controlling the update process of deep neural networks
Continuous diagnosis and prognosis are essential for critical patients. They can provide more opportunities for timely treatment and rational allocation. Although deep-learning techniques have demonstrated superiority in many medical tasks, they frequently forget, overfit, and produce results too la...
Autores principales: | Sun, Chenxi, Li, Hongyan, Song, Moxian, Cai, Derun, Zhang, Baofeng, Hong, Shenda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9982300/ https://www.ncbi.nlm.nih.gov/pubmed/36873902 http://dx.doi.org/10.1016/j.patter.2023.100687 |
Ejemplares similares
-
Adaptive model training strategy for continuous classification of time series
por: Sun, Chenxi, et al.
Publicado: (2023) -
Predicting COVID-19 disease progression and patient outcomes based on temporal deep learning
por: Sun, Chenxi, et al.
Publicado: (2021) -
Estimating critical values from electrocardiogram using a deep ordinal convolutional neural network
por: Wei, Guodong, et al.
Publicado: (2022) -
Practical Lessons on 12-Lead ECG Classification: Meta-Analysis of Methods From PhysioNet/Computing in Cardiology Challenge 2020
por: Hong, Shenda, et al.
Publicado: (2022) -
Efficient processing of deep neural networks
por: Sze, Vivienne, et al.
Publicado: (2020)